Swarm Intelligence最新文献

筛选
英文 中文
ANTS 2020 Special Issue: Editorial 《蚂蚁2020》特刊:社论
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-11-23 DOI: 10.1007/s11721-021-00208-3
M. Dorigo, T. Stützle, M. Blesa, C. Blum, Heiko Hamann, Mary Katherine Heinrich
{"title":"ANTS 2020 Special Issue: Editorial","authors":"M. Dorigo, T. Stützle, M. Blesa, C. Blum, Heiko Hamann, Mary Katherine Heinrich","doi":"10.1007/s11721-021-00208-3","DOIUrl":"https://doi.org/10.1007/s11721-021-00208-3","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"311 - 313"},"PeriodicalIF":2.6,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41710282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine education approach to swarm decision-making in best-of-n problems 一种机器教育方法在最优化问题中进行群体决策
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-11-22 DOI: 10.1007/s11721-021-00206-5
Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.
{"title":"A machine education approach to swarm decision-making in best-of-n problems","authors":"Hussein, Aya, Elsawah, Sondoss, Petraki, Eleni, Abbass, Hussein A.","doi":"10.1007/s11721-021-00206-5","DOIUrl":"https://doi.org/10.1007/s11721-021-00206-5","url":null,"abstract":"<p>In swarm decision making, hand-crafting agents’ rules that use local information to achieve desirable swarm-level behaviours is a non-trivial design problem. Instead of relying entirely on swarm experts for designing these local rules, machine learning (ML) algorithms can be utilised for learning some of the local rules by mapping an agent’s perception to an appropriate action. To facilitate this process, we propose the use of Machine Education (ME) as a systematic approach for designing a curriculum for teaching the agents the required skills to autonomously select appropriate behaviours. We study the use of ME in the context of decision-making in best-of-n problems. The proposed approach draws on swarm robotics expertise for identifying agents’ capabilities and limitations, the skills required for generating the desirable behaviours, and the corresponding performance measures. In addition, ME utilises ML expertise for the selection and development of the ML algorithms suitable for each skill. The results of the experimental evaluations demonstrate the superior efficacy of the ME-based approach over the state-of-the-art approaches with respect to speed and accuracy. In addition, our approach shows considerable robustness to changes in swarm size and to changes in sensing and communication noise. Our findings promote the use of ME for teaching swarm members the required skills for achieving complex swarm tasks.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"348 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ant colony optimization for feasible scheduling of step-controlled smart grid generation 步进控制智能电网发电可行调度的蚁群优化
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-10-19 DOI: 10.1007/s11721-021-00204-7
Jörg Bremer, S. Lehnhoff
{"title":"Ant colony optimization for feasible scheduling of step-controlled smart grid generation","authors":"Jörg Bremer, S. Lehnhoff","doi":"10.1007/s11721-021-00204-7","DOIUrl":"https://doi.org/10.1007/s11721-021-00204-7","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"403 - 425"},"PeriodicalIF":2.6,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42049252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning as a rehearsal for swarm foraging 强化学习作为群体觅食的预演
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-09-29 DOI: 10.1007/s11721-021-00203-8
Nguyen, Trung, Banerjee, Bikramjit
{"title":"Reinforcement learning as a rehearsal for swarm foraging","authors":"Nguyen, Trung, Banerjee, Bikramjit","doi":"10.1007/s11721-021-00203-8","DOIUrl":"https://doi.org/10.1007/s11721-021-00203-8","url":null,"abstract":"<p>Foraging in a swarm of robots has been investigated by many researchers, where the prevalent techniques have been hand-designed algorithms with parameters often tuned via machine learning. Our departure point is one such algorithm, where we replace a hand-coded decision procedure with reinforcement learning (RL), resulting in significantly superior performance. We situate our approach within the reinforcement learning as a rehearsal (RLaR) framework, that we have recently introduced. We instantiate RLaR for the foraging problem and experimentally show that a key component of RLaR—a conditional probability distribution function—can be modeled as a uni-modal distribution (with a lower memory footprint) despite evidence that it is multi-modal. Our experiments also show that the learned behavior has some degree of scalability in terms of variations in the swarm size or the environment.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"371 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing 基于分布式贝叶斯信念共享的群机器人离散集合估计
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-09-05 DOI: 10.1007/s11721-021-00201-w
Qihao Shan, Sanaz Mostaghim
{"title":"Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing","authors":"Qihao Shan, Sanaz Mostaghim","doi":"10.1007/s11721-021-00201-w","DOIUrl":"https://doi.org/10.1007/s11721-021-00201-w","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"377 - 402"},"PeriodicalIF":2.6,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47398175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Collective decision-making for dynamic environments with visual occlusions 具有视觉遮挡的动态环境下的集体决策
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-08-25 DOI: 10.1007/s11721-021-00200-x
Fan Jiang, Hui Cheng, Guanrong Chen
{"title":"Collective decision-making for dynamic environments with visual occlusions","authors":"Fan Jiang, Hui Cheng, Guanrong Chen","doi":"10.1007/s11721-021-00200-x","DOIUrl":"https://doi.org/10.1007/s11721-021-00200-x","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"13 1","pages":"7 - 27"},"PeriodicalIF":2.6,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-021-00200-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52793631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HuGoS: a virtual environment for studying collective human behavior from a swarm intelligence perspective HuGoS:从群体智能角度研究人类集体行为的虚拟环境
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-08-03 DOI: 10.1007/s11721-021-00199-1
Nicolas Coucke, Mary Katherine Heinrich, A. Cleeremans, M. Dorigo
{"title":"HuGoS: a virtual environment for studying collective human behavior from a swarm intelligence perspective","authors":"Nicolas Coucke, Mary Katherine Heinrich, A. Cleeremans, M. Dorigo","doi":"10.1007/s11721-021-00199-1","DOIUrl":"https://doi.org/10.1007/s11721-021-00199-1","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"339 - 376"},"PeriodicalIF":2.6,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47099190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Achieving task allocation in swarm intelligence with bi-objective embodied evolution 基于双目标嵌入进化的群体智能任务分配
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-07-04 DOI: 10.1007/s11721-021-00198-2
Qihao Shan, Sanaz Mostaghim
{"title":"Achieving task allocation in swarm intelligence with bi-objective embodied evolution","authors":"Qihao Shan, Sanaz Mostaghim","doi":"10.1007/s11721-021-00198-2","DOIUrl":"https://doi.org/10.1007/s11721-021-00198-2","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"287 - 310"},"PeriodicalIF":2.6,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-021-00198-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42524837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Collective preference learning in the best-of-n problem 最优化问题中的集体偏好学习
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-06-02 DOI: 10.1007/s11721-021-00191-9
Michael Crosscombe, Jonathan Lawry
{"title":"Collective preference learning in the best-of-n problem","authors":"Michael Crosscombe, Jonathan Lawry","doi":"10.1007/s11721-021-00191-9","DOIUrl":"https://doi.org/10.1007/s11721-021-00191-9","url":null,"abstract":"<p>Decentralised autonomous systems rely on distributed learning to make decisions and to collaborate in pursuit of a shared objective. For example, in swarm robotics the best-of-<i>n</i> problem is a well-known collective decision-making problem in which agents attempt to learn the best option out of <i>n</i> possible alternatives based on local feedback from the environment. This typically involves gathering information about all <i>n</i> alternatives while then systematically discarding information about all but the best option. However, for applications such as search and rescue in which learning the ranking of options is useful or crucial, best-of-<i>n</i> decision-making can be wasteful and costly. Instead, we investigate a more general distributed learning process in which agents learn a preference ordering over all of the <i>n</i> options. More specifically, we introduce a distributed rank learning algorithm based on three-valued logic. We then use agent-based simulation experiments to demonstrate the effectiveness of this model. In this context, we show that a population of agents are able to learn a total ordering over the <i>n</i> options and furthermore the learning process is robust to evidential noise. To demonstrate the practicality of our model, we restrict the communication bandwidth between the agents and show that this model is also robust to limited communications whilst outperforming a comparable probabilistic model under the same communication conditions.</p>","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"326 ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Quorum sensing without deliberation: biological inspiration for externalizing computation to physical spaces in multi-robot systems 未经审议的群体感应:在多机器人系统中将计算外部化到物理空间的生物学启示
IF 2.6 4区 计算机科学
Swarm Intelligence Pub Date : 2021-06-01 DOI: 10.1007/s11721-021-00196-4
Theodore P. Pavlic, J. Hanson, Gabriele Valentini, S. Walker, S. Pratt
{"title":"Quorum sensing without deliberation: biological inspiration for externalizing computation to physical spaces in multi-robot systems","authors":"Theodore P. Pavlic, J. Hanson, Gabriele Valentini, S. Walker, S. Pratt","doi":"10.1007/s11721-021-00196-4","DOIUrl":"https://doi.org/10.1007/s11721-021-00196-4","url":null,"abstract":"","PeriodicalId":51284,"journal":{"name":"Swarm Intelligence","volume":"15 1","pages":"171 - 203"},"PeriodicalIF":2.6,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11721-021-00196-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52793481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信