{"title":"Existence of solutions for critical Klein–Gordon equations coupled with Born–Infeld theory in higher dimensions","authors":"Zhenyu Guo, Xueqian Yan","doi":"10.4171/pm/2116","DOIUrl":"https://doi.org/10.4171/pm/2116","url":null,"abstract":"","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"52 14","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Null controllability and Stackelberg–Nash strategy for a $2times 2$ system of parabolic equations","authors":"Islanita C. A. Albuquerque, Maurício C. Santos","doi":"10.4171/pm/2111","DOIUrl":"https://doi.org/10.4171/pm/2111","url":null,"abstract":"","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"24 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135366508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rank-one ECS manifolds of dilational type","authors":"Andrzej Derdzinski, Ivo Terek","doi":"10.4171/pm/2110","DOIUrl":"https://doi.org/10.4171/pm/2110","url":null,"abstract":"We study ECS manifolds, that is, pseudo-Riemannian manifolds with parallel Weyl tensor which are neither conformally flat nor locally symmetric. Every ECS manifold has rank 1 or 2, the rank being the dimension of a distinguished null parallel distribution discovered by Olszak, and a rank-one ECS manifold may be called translational or dilational, depending on whether the holonomy group of a natural flat connection in the Olszak distribution is finite or infinite. Some such manifolds are in a natural sense generic, which refers to the algebraic structure of the Weyl tensor. Known examples of compact ECS manifolds, in every dimension greater than 4, are all of rank 1 and translational, some of them generic, none of them locally homogeneous. As we show, generic compact rank-one ECS manifolds must be translational or locally homogeneous, provided that they arise as isometric quotients of a specific class of explicitly constructed\"model\"manifolds. This result is relevant since the clause starting with\"provided that\"may be dropped: according to a theorem which we prove in a forthcoming paper, the models just mentioned include the isometry types of the pseudo-Riemannian universal coverings of all generic compact rank-one ECS manifolds.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"30 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135323066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On generalized Wilf conjectures","authors":"M. Can, Naufil Sakran","doi":"10.4171/pm/2112","DOIUrl":"https://doi.org/10.4171/pm/2112","url":null,"abstract":"We investigate complement-finite submonoids of the monoid of nonnegative integer points of a unipotent linear algebraic group $G$. These monoids are in general noncommutative but they specialize to the generalized numerical monoids of Cistco et al. We show that every unipotent numerical monoid has a unique finite minimal generating set. We propose a generalization of the Wilf conjecture in our setting. We contrast our Wilf conjecture against the Generalized Wilf Conjecture. Then we isolate two new families of unipotent numerical monoids called the {em thick} and the {em thin} unipotent numerical monoids. We prove that our Wilf conjecture holds for every thick (commutative) unipotent numerical monoid. Under additional assumptions on the conductors, we prove that our Wilf conjecture holds for every thin (commutative) unipotent numerical monoid.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"27 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139370556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normal bundle of monomial curves: an application to rational curves","authors":"A. Alzati, Raquel Mallavibarrena","doi":"10.4171/pm/2104","DOIUrl":"https://doi.org/10.4171/pm/2104","url":null,"abstract":". In this note we give an application to the study of very general rational curves in P s ( C ) of the calculation of the splitting type of the normal bundle of any smooth monomial rational curve (i.e. embedded by monomial functions).","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45537695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical analysis of a discrete population balance model with sum kernel","authors":"Sonali Kaushik, Rajesh Kumar, F. D. da Costa","doi":"10.4171/pm/2103","DOIUrl":"https://doi.org/10.4171/pm/2103","url":null,"abstract":"","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42582216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monotone extremal functions and the weighted Hilbert’s inequality","authors":"E. Carneiro, Friedrich Littmann","doi":"10.4171/pm/2109","DOIUrl":"https://doi.org/10.4171/pm/2109","url":null,"abstract":"In this note we find optimal one-sided majorants of exponential type for the signum function subject to certain monotonicity conditions. As an application, we use these special functions to obtain a simple Fourier analysis proof of the (non-sharp) weighted Hilbert-Montgomery-Vaughan inequality.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45704920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hardwiring truth in functional interpretations","authors":"Bruno Miguel Antunes Dinis, Jaime Gaspar","doi":"10.4171/pm/2094","DOIUrl":"https://doi.org/10.4171/pm/2094","url":null,"abstract":"","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41771181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}