关于广义威尔弗猜想

IF 0.5 4区 数学 Q3 MATHEMATICS
M. Can, Naufil Sakran
{"title":"关于广义威尔弗猜想","authors":"M. Can, Naufil Sakran","doi":"10.4171/pm/2112","DOIUrl":null,"url":null,"abstract":"We investigate complement-finite submonoids of the monoid of nonnegative integer points of a unipotent linear algebraic group $G$. These monoids are in general noncommutative but they specialize to the generalized numerical monoids of Cistco et al. We show that every unipotent numerical monoid has a unique finite minimal generating set. We propose a generalization of the Wilf conjecture in our setting. We contrast our Wilf conjecture against the Generalized Wilf Conjecture. Then we isolate two new families of unipotent numerical monoids called the {\\em thick} and the {\\em thin} unipotent numerical monoids. We prove that our Wilf conjecture holds for every thick (commutative) unipotent numerical monoid. Under additional assumptions on the conductors, we prove that our Wilf conjecture holds for every thin (commutative) unipotent numerical monoid.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generalized Wilf conjectures\",\"authors\":\"M. Can, Naufil Sakran\",\"doi\":\"10.4171/pm/2112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate complement-finite submonoids of the monoid of nonnegative integer points of a unipotent linear algebraic group $G$. These monoids are in general noncommutative but they specialize to the generalized numerical monoids of Cistco et al. We show that every unipotent numerical monoid has a unique finite minimal generating set. We propose a generalization of the Wilf conjecture in our setting. We contrast our Wilf conjecture against the Generalized Wilf Conjecture. Then we isolate two new families of unipotent numerical monoids called the {\\\\em thick} and the {\\\\em thin} unipotent numerical monoids. We prove that our Wilf conjecture holds for every thick (commutative) unipotent numerical monoid. Under additional assumptions on the conductors, we prove that our Wilf conjecture holds for every thin (commutative) unipotent numerical monoid.\",\"PeriodicalId\":51269,\"journal\":{\"name\":\"Portugaliae Mathematica\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Portugaliae Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/pm/2112\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了单能线性代数群 $G$ 的非负整数点单元的补无限子单元。我们证明了每个单能数值单元都有一个唯一的有限最小生成集。我们提出了在我们的环境中对 Wilf 猜想的一般化。我们将 Wilf 猜想与广义 Wilf 猜想进行对比。然后,我们分离出两个新的单能数值单元族,分别称为{\em thick}和{\em thin}单能数值单元。我们证明,我们的威尔弗猜想对于每一个厚(交换)单能数值单元都成立。根据对导体的额外假设,我们证明我们的 Wilf 猜想对每个薄(交换)单能数值单元都成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generalized Wilf conjectures
We investigate complement-finite submonoids of the monoid of nonnegative integer points of a unipotent linear algebraic group $G$. These monoids are in general noncommutative but they specialize to the generalized numerical monoids of Cistco et al. We show that every unipotent numerical monoid has a unique finite minimal generating set. We propose a generalization of the Wilf conjecture in our setting. We contrast our Wilf conjecture against the Generalized Wilf Conjecture. Then we isolate two new families of unipotent numerical monoids called the {\em thick} and the {\em thin} unipotent numerical monoids. We prove that our Wilf conjecture holds for every thick (commutative) unipotent numerical monoid. Under additional assumptions on the conductors, we prove that our Wilf conjecture holds for every thin (commutative) unipotent numerical monoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Portugaliae Mathematica
Portugaliae Mathematica MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信