Notre Dame Journal of Formal Logic最新文献

筛选
英文 中文
Four-Valued Logics of Truth, Nonfalsity, Exact Truth, and Material Equivalence 真、非真、精确真和物质等价的四值逻辑
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-11-01 DOI: 10.1215/00294527-2020-0025
Adam Přenosil
{"title":"Four-Valued Logics of Truth, Nonfalsity, Exact Truth, and Material Equivalence","authors":"Adam Přenosil","doi":"10.1215/00294527-2020-0025","DOIUrl":"https://doi.org/10.1215/00294527-2020-0025","url":null,"abstract":"The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact truth (truth and nonfalsity). Interpreting equality of truth values in this semantics as material equivalence of propositions, we can moreover see the equational consequence relation of this four-element algebra as a logic of material equivalence. In this paper, we axiomatize all combinations of these four-valued logics, for example, the logic of truth and exact truth or the logic of truth and material equivalence. These combined systems are consequence relations which allow us to express implications involving more than one of these features of propositions.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49311065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
One Lie Group to Define Them All 用一个谎言群来定义所有谎言
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-10-20 DOI: 10.1215/00294527-2022-0002
Annalisa Conversano, M. Mamino
{"title":"One Lie Group to Define Them All","authors":"Annalisa Conversano, M. Mamino","doi":"10.1215/00294527-2022-0002","DOIUrl":"https://doi.org/10.1215/00294527-2022-0002","url":null,"abstract":"We prove that a first-order structure defines (resp. interprets) every connected Lie group if and only if it defines (resp. interprets) the real field expanded with a predicate for the integers.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45028956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Definable Functions and Stratifications in Power-Bounded $T$-Convex Fields 幂有界$T$-凸域中的可定义函数和分层
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-09-01 DOI: 10.1215/00294527-2020-0013
E. Ramírez
{"title":"Definable Functions and Stratifications in Power-Bounded $T$-Convex Fields","authors":"E. Ramírez","doi":"10.1215/00294527-2020-0013","DOIUrl":"https://doi.org/10.1215/00294527-2020-0013","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66054716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Connexive Restricted Quantification 连接限制定量
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-09-01 DOI: 10.1215/00294527-2020-0015
N. Francez
{"title":"Connexive Restricted Quantification","authors":"N. Francez","doi":"10.1215/00294527-2020-0015","DOIUrl":"https://doi.org/10.1215/00294527-2020-0015","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88989853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum for "Conditionals and Conditional Probabilities without Triviality" “没有琐碎性的条件和条件概率”的勘误
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-09-01 DOI: 10.1215/00294527-2020-0019
A. Pruss
{"title":"Erratum for \"Conditionals and Conditional Probabilities without Triviality\"","authors":"A. Pruss","doi":"10.1215/00294527-2020-0019","DOIUrl":"https://doi.org/10.1215/00294527-2020-0019","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87595831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prospects for a Theory of Decycling 循环理论展望
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-09-01 DOI: 10.1215/00294527-2020-0016
Jon Erling Litland
{"title":"Prospects for a Theory of Decycling","authors":"Jon Erling Litland","doi":"10.1215/00294527-2020-0016","DOIUrl":"https://doi.org/10.1215/00294527-2020-0016","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83806800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Ideals and Their Generic Ultrafilters 理想及其通用超滤机
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-09-01 DOI: 10.1215/00294527-2020-0012
David Chodounský, J. Zapletal
{"title":"Ideals and Their Generic Ultrafilters","authors":"David Chodounský, J. Zapletal","doi":"10.1215/00294527-2020-0012","DOIUrl":"https://doi.org/10.1215/00294527-2020-0012","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76429199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Begriffsschrift's Logic Begriffsschrift的逻辑
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-09-01 DOI: 10.1215/00294527-2020-0014
Calixto Badesa, Joan Bertran-San Millán
{"title":"Begriffsschrift's Logic","authors":"Calixto Badesa, Joan Bertran-San Millán","doi":"10.1215/00294527-2020-0014","DOIUrl":"https://doi.org/10.1215/00294527-2020-0014","url":null,"abstract":"","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83275956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alphabetical order 字母顺序排列
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-08-25 DOI: 10.1305/ndjfl/1093637871
G. Boolos
{"title":"Alphabetical order","authors":"G. Boolos","doi":"10.1305/ndjfl/1093637871","DOIUrl":"https://doi.org/10.1305/ndjfl/1093637871","url":null,"abstract":"www.tlsbooks.com Alphabetical Order Read the words in each row. Write the number 1 by the word that is first in alphabetical order. Write the number 2 by the word that is second in alphabetical order. Write the number 3 by the word that is last in alphabetical order. The first one is done for you. ____ cute ____ turtle ____ little ____ snake ____ gopher ____ cobra ____ cactus ____ plant ____ grow ____ rabbits ____ fast ____ hop ____ cookies ____ milk ____ full ____ camping ____ flashlight ____ tent ____ truck ____ jeep ____ car ____ quickly ____ gerbils ____ run ____ I ____ support ____ zoos ____ needs ____ earth ____ respect ____ sting ____ scorpions ____ sometimes ____ useful ____ are ____ almanacs ____ chase ____ cats ____ mice ____ Asia ____ Europe ____ Australia ____ develop ____ grow ____ learn ____ math ____ numbers ____ googol ____ drum ____ flute ____ cello ____ plane ____ ship ____ train 1 3 2","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1305/ndjfl/1093637871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72371441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Provability and Interpretability Logics with Restricted Realizations 具有受限实现的可证明性和可解释性逻辑
IF 0.7 3区 数学
Notre Dame Journal of Formal Logic Pub Date : 2020-06-18 DOI: 10.1215/00294527-1715653
Thomas F. Icard, J. Joosten
{"title":"Provability and Interpretability Logics with Restricted Realizations","authors":"Thomas F. Icard, J. Joosten","doi":"10.1215/00294527-1715653","DOIUrl":"https://doi.org/10.1215/00294527-1715653","url":null,"abstract":"The provability logic of a theory T is the set of modal formulas, which under any arithmetical realization are provable in T . We slightly modify this notion by requiring the arithmetical realizations to come from a specified set $Gamma$. We make an analogous modification for interpretability logics. This is a paper from 2012. We first studied provability logics with restricted realizations, and show that for various natural candidates of theory T and restriction set $Gamma$, where each sentence in $Gamma$ has a well understood (meta)-mathematical content in T, the result is the logic of linear frames. However, for the theory Primitive Recursive Arithmetic (PRA), we define a fragment that gives rise to a more interesting provability logic, by capitalizing on the well-studied relationship between PRA and I$Sigma_1$. We then study interpretability logics, obtaining some upper bounds for IL(PRA), whose characterization remains a major open question in interpretability logic. Again this upper bound is closely relatively to linear frames. The technique is also applied to yield the non-trivial result that IL(PRA) $subset$ ILM.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78394337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信