{"title":"真、非真、精确真和物质等价的四值逻辑","authors":"Adam Přenosil","doi":"10.1215/00294527-2020-0025","DOIUrl":null,"url":null,"abstract":"The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact truth (truth and nonfalsity). Interpreting equality of truth values in this semantics as material equivalence of propositions, we can moreover see the equational consequence relation of this four-element algebra as a logic of material equivalence. In this paper, we axiomatize all combinations of these four-valued logics, for example, the logic of truth and exact truth or the logic of truth and material equivalence. These combined systems are consequence relations which allow us to express implications involving more than one of these features of propositions.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Four-Valued Logics of Truth, Nonfalsity, Exact Truth, and Material Equivalence\",\"authors\":\"Adam Přenosil\",\"doi\":\"10.1215/00294527-2020-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact truth (truth and nonfalsity). Interpreting equality of truth values in this semantics as material equivalence of propositions, we can moreover see the equational consequence relation of this four-element algebra as a logic of material equivalence. In this paper, we axiomatize all combinations of these four-valued logics, for example, the logic of truth and exact truth or the logic of truth and material equivalence. These combined systems are consequence relations which allow us to express implications involving more than one of these features of propositions.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2020-0025\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2020-0025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Four-Valued Logics of Truth, Nonfalsity, Exact Truth, and Material Equivalence
The four-valued semantics of Belnap–Dunn logic, consisting of the truth values True, False, Neither, and Both, gives rise to several nonclassical logics depending on which feature of propositions we wish to preserve: truth, nonfalsity, or exact truth (truth and nonfalsity). Interpreting equality of truth values in this semantics as material equivalence of propositions, we can moreover see the equational consequence relation of this four-element algebra as a logic of material equivalence. In this paper, we axiomatize all combinations of these four-valued logics, for example, the logic of truth and exact truth or the logic of truth and material equivalence. These combined systems are consequence relations which allow us to express implications involving more than one of these features of propositions.
期刊介绍:
The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.