Transportation Science最新文献

筛选
英文 中文
Hub Network Design Problem with Capacity, Congestion, and Stochastic Demand Considerations 考虑容量、拥塞和随机需求的集线器网络设计问题
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-06-16 DOI: 10.1287/trsc.2022.0112
Vedat Bayram, Barış Yıldız, M. Farham
{"title":"Hub Network Design Problem with Capacity, Congestion, and Stochastic Demand Considerations","authors":"Vedat Bayram, Barış Yıldız, M. Farham","doi":"10.1287/trsc.2022.0112","DOIUrl":"https://doi.org/10.1287/trsc.2022.0112","url":null,"abstract":"Our study introduces the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decisions and congestion cost effect into the problem and allowing dynamic routing for origin-destination (OD) pairs. Connecting strategic and operational level decisions, HNDC jointly decides hub locations and capacity acquisitions by considering the expected routing and congestion costs. A path-based mixed-integer second-order cone programming (SOCP) formulation of the HNDC is proposed. We exploit SOCP duality results and propose an exact algorithm based on Benders decomposition and column generation to solve this challenging problem. We use a specific characterization of the capacity-feasible solutions to speed up the solution procedure and develop an efficient branch-and-cut algorithm to solve the master problem. We conduct extensive computational experiments to test the proposed approach’s performance and derive managerial insights based on realistic problem instances adapted from the literature. In particular, we found that including hub congestion costs, accounting for the uncertainty in demand, and whether the underlying network is complete or incomplete have a significant impact on hub network design and the resulting performance of the system. Funding: This work was supported by Türkiye Bilimsel ve Teknolojik Araştırma Kurumu [Grant 218M520]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0112 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45191734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Algorithms for Stochastic Ride-Pooling Assignment with Mixed Fleets 混合车队随机拼车分配的有效算法
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-06-15 DOI: 10.1287/trsc.2021.0349
Qi Luo, V. Nagarajan, A. Sundt, Yafeng Yin, J. Vincent, M. Shahabi
{"title":"Efficient Algorithms for Stochastic Ride-Pooling Assignment with Mixed Fleets","authors":"Qi Luo, V. Nagarajan, A. Sundt, Yafeng Yin, J. Vincent, M. Shahabi","doi":"10.1287/trsc.2021.0349","DOIUrl":"https://doi.org/10.1287/trsc.2021.0349","url":null,"abstract":"Ride-pooling, which accommodates multiple passenger requests in a single trip, has the potential to substantially enhance the throughput of mobility-on-demand (MoD) systems. This paper investigates MoD systems that operate mixed fleets composed of “basic supply” and “augmented supply” vehicles. When the basic supply is insufficient to satisfy demand, augmented supply vehicles can be repositioned to serve rides at a higher operational cost. We formulate the joint vehicle repositioning and ride-pooling assignment problem as a two-stage stochastic integer program, where repositioning augmented supply vehicles precedes the realization of ride requests. Sequential ride-pooling assignments aim to maximize total utility or profit on a shareability graph: a hypergraph representing the matching compatibility between available vehicles and pending requests. Two approximation algorithms for midcapacity and high-capacity vehicles are proposed in this paper; the respective approximation ratios are [Formula: see text] and [Formula: see text], where p is the maximum vehicle capacity plus one. Our study evaluates the performance of these approximation algorithms using an MoD simulator, demonstrating that these algorithms can parallelize computations and achieve solutions with small optimality gaps (typically within 1%). These efficient algorithms pave the way for various multimodal and multiclass MoD applications. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the National Science Foundation [Grants CCF-2006778 and FW-HTF-P 2222806], the Ford Motor Company, and the Division of Civil, Mechanical, and Manufacturing Innovation [Grants CMMI-1854684, CMMI-1904575, and CMMI-1940766]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.0349 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41934202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation and Routing of Worker Teams for Airport Ground Handling Operations: A Branch-and-Price-and-Check Approach 机场地勤工作人员队伍的组成和路线安排:分部-价格-检查方法
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-06-02 DOI: 10.1287/trsc.2022.0110
Giacomo Dall’Olio, R. Kolisch
{"title":"Formation and Routing of Worker Teams for Airport Ground Handling Operations: A Branch-and-Price-and-Check Approach","authors":"Giacomo Dall’Olio, R. Kolisch","doi":"10.1287/trsc.2022.0110","DOIUrl":"https://doi.org/10.1287/trsc.2022.0110","url":null,"abstract":"We address workforce optimization for ground handling operations at the airport, focusing on baggage loading and unloading. Teams of skilled workers have to be formed and routed across the apron to unload the baggage from the aircraft after a landing and to load it before takeoff. Such tasks must be performed within time windows and require a team of workers with different skill levels. The goal is to find a feasible plan that minimizes the sum of the tasks completion times. We formalize a variation of the workforce scheduling and routing problem, integrating team formation, hierarchical skills with downgrading, multiple trips, and different execution modes. We propose a solution approach based on branch-and-price-and-check and test it on real-world instances from a major European hub airport. We propose a model based on the Dantzig–Wolfe decomposition. In the pricing problem, we generate tours of teams as shortest paths with constrained resources in a network. In the master problem, we select an optimal set of tours that do not exceed the workforce availability. Our experiments show that the proposed algorithm can produce optimal solutions for small- and medium-sized instances and good or optimal solutions for large instances. The results also show that our approach outperforms the current airport dispatching policy. Funding: G. Dall’Olio was funded by the Deutsche Forschungsgemeinschaft [Grant Advanced Optimization in a Networked Economy Graduiertenkolleg 2201, Project 277991500]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0110 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47873928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty Estimation of Connected Vehicle Penetration Rate 网联汽车普及率的不确定性估计
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-05-22 DOI: 10.1287/trsc.2023.1209
Shaocheng Jia, S. Wong, W. Wong
{"title":"Uncertainty Estimation of Connected Vehicle Penetration Rate","authors":"Shaocheng Jia, S. Wong, W. Wong","doi":"10.1287/trsc.2023.1209","DOIUrl":"https://doi.org/10.1287/trsc.2023.1209","url":null,"abstract":"Knowledge of the connected vehicle (CV) penetration rate is crucial for realizing numerous beneficial applications during the prolonged transition period to full CV deployment. A recent study described a novel single-source data penetration rate estimator (SSDPRE) for estimating the CV penetration rate solely from CV data. However, despite the unbiasedness of the SSDPRE, it is only a point estimator. Consequently, given the typically nonlinear nature of transportation systems, model estimations or system optimizations conducted with the SSDPRE without considering its variability can generate biased models or suboptimal solutions. Thus, this study proposes a probabilistic penetration rate model for estimating the variability of the results generated by the SSDPRE. An essential input for this model is the constrained queue length distribution, which is the distribution of the number of stopping vehicles in a signal cycle. An exact probabilistic dissipation time model and a simplified constant dissipation time model are developed for estimating this distribution. In addition, to improve the estimation accuracy in real-world situations, the braking and start-up motions of vehicles are considered by constructing a constant time loss model for use in calibrating the dissipation time models. VISSIM simulation demonstrates that the calibrated models accurately describe constrained queue length distributions and estimate the variability of the results generated by the SSDPRE. Furthermore, applications of the calibrated models to the next-generation simulation data set and a simple CV-based adaptive signal control scheme demonstrate the readiness of the models for use in real-world situations and the potential of the models to improve system optimizations. Funding: This work was supported by The University of Hong Kong [Francis S Y Bong Professorship in Engineering and Postgraduate Scholarship] and by the Council of the Hong Kong Special Administrative Region, China [Grants 17204919 and 17205822]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2023.1209 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41507878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Human-Robot Cooperation: Coordinating Autonomous Mobile Robots and Human Order Pickers 人机合作:协调自主移动机器人和人类拣货员
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-05-05 DOI: 10.1287/trsc.2023.1207
Maximilian Löffler, N. Boysen, Michael Schneider
{"title":"Human-Robot Cooperation: Coordinating Autonomous Mobile Robots and Human Order Pickers","authors":"Maximilian Löffler, N. Boysen, Michael Schneider","doi":"10.1287/trsc.2023.1207","DOIUrl":"https://doi.org/10.1287/trsc.2023.1207","url":null,"abstract":"In the e-commerce era, efficient order fulfillment processes in distribution centers have become a key success factor. One novel technology to streamline these processes is robot-assisted order picking. In these systems, human order pickers are supported by autonomous mobile robots (AMRs), which carry bins for collecting picking orders, autonomously move through the warehouse, and wait in front of a shelf containing a requested stock keeping unit (SKU). Once a picker has approached a waiting AMR and placed the requested SKU into the respective bin, AMR and picker may separate and move toward other picking positions. In this way, pickers continuously move between different waiting AMRs without having to return to the depot. This paper treats the coordination of multiple AMRs and multiple pickers to minimize the makespan. We present a heuristic method for the deterministic case that can handle the requirements of large e-commerce fulfillment centers and successfully solves instances with more than one thousand picking positions. Based on the obtained solutions, the performance of our picking system is compared with the traditional warehouse setup without AMR support and to another work policy using fixed pairings of picker and AMR per order. We find that largely improved makespans can be expected. In addition, we analyze the effects of stochastic picking times, speed differences between AMRs and pickers, and a zoning strategy. The ripple effect caused by stochastic picking times, in which a single delay may cascade through a tightly synchronized schedule and deteriorate picking performance, can be effectively mitigated by separating the workforce into smaller subgroups. Another important finding is that pickers and AMR should have approximately the same travel speed because slower AMRs deteriorate system performance. Finally, zoning slightly decreases the flexibility of the system and should be used if dictated by organizational reasons. History: This article is part of a special issue: Emerging Topics in Transportation Science and Logistics. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2023.1207 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"35 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66548570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Passenger-Centric Integrated Airline Schedule and Aircraft Recovery 以乘客为中心的综合航空公司时刻表和飞机回收
2区 工程技术
Transportation Science Pub Date : 2023-05-01 DOI: 10.1287/trsc.2022.1174
Luis Cadarso, Vikrant Vaze
{"title":"Passenger-Centric Integrated Airline Schedule and Aircraft Recovery","authors":"Luis Cadarso, Vikrant Vaze","doi":"10.1287/trsc.2022.1174","DOIUrl":"https://doi.org/10.1287/trsc.2022.1174","url":null,"abstract":"Airlines are known to compete for passengers, and airline profitability heavily depends on the ability to estimate passenger demand, which in turn depends on flight schedules, fares, and the number of seats available at each fare, across all airlines. Interestingly, such competitive interactions and passenger substitution effects may not be limited to the planning stages. Existing regulations in some countries and regions impose monetary compensations to passengers in case of disruptions, altering the way they perceive the utility of other travel alternatives after the disruption starts. These passenger rights regulations may act as catalysts of passengers’ response to recovered schedules. Ignoring such passenger response behavior under operational disruptions may lead airlines to develop subpar recovery schedules. We develop a passenger response model and embed it into a novel integrated optimization approach that recovers airline schedules, aircraft, and passenger itineraries while endogenizing the impacts of airlines' decisions on passenger compensation and passenger response. We also develop an original solution approach, involving exact linearization of the nonlinear passenger cost terms, combined with delayed constraint generation for ensuring aircraft maintenance feasibility and an acceleration technique that penalizes deviations from planned schedules. Computational results on real-world problem instances from two major European airlines are reported, for scenarios involving disruptions, such as delayed flights, airport closures, and unexpected grounding of aircraft. Our approach is found to be tractable and scalable, producing solutions that are superior to airline’s actual decisions and highly robust in the face of passenger response uncertainty. Of particular relevance to the practitioners, our simulation results highlight that accounting for passengers’ disruption response behaviors, even in a highly approximate manner, yields significant benefits to the airline compared with not accounting for them at all, which is the current state-of-the-art. Funding: This work was supported by the Agencia Estatal de Investigación [Grant PID2020-112967GB-C33], the Ministerio de Economía y Competitividad, Spain [Grant TRA2016-76914-C3-3-P], and the Ministerio de Ciencia, Innovación y Universidades, Spain [Grant CAS19/00036].","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135399717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Parking Search in the Physical World: Calculating the Search Time by Leveraging Physical and Graph Theoretical Methods 物理世界中的停车搜索:利用物理和图理论方法计算搜索时间
2区 工程技术
Transportation Science Pub Date : 2023-05-01 DOI: 10.1287/trsc.2023.1206
Nilankur Dutta, Thibault Charlottin, Alexandre Nicolas
{"title":"Parking Search in the Physical World: Calculating the Search Time by Leveraging Physical and Graph Theoretical Methods","authors":"Nilankur Dutta, Thibault Charlottin, Alexandre Nicolas","doi":"10.1287/trsc.2023.1206","DOIUrl":"https://doi.org/10.1287/trsc.2023.1206","url":null,"abstract":"Parking plays a central role in transport policies and has wide-ranging consequences: While the average time spent searching for parking exceeds dozens of hours per driver every year in many Western cities, the associated cruising traffic generates major externalities, by emitting pollutants and contributing to congestion. However, the laws governing the parking search time remain opaque in many regards, which hinders any general understanding of the problem and its determinants. Here, we frame the problem of parking search in a very generic, but mathematically compact formulation that puts the focus on the role of the street network and the unequal attractiveness of parking spaces. This problem is solved in two independent ways, valid in any street network and for a wide range of drivers’ behaviours. Numerically, this is done by means of a computationally efficient and versatile agent-based model. Analytically, we leverage the machinery of Statistical Physics and Graph Theory to derive a generic mean-field relation giving the parking search time as a function of the occupancy of parking spaces; an expression for the latter is obtained in the stationary regime. We show that these theoretical results are applicable in toy networks as well as in complex, realistic cases such as the large-scale street network of the city of Lyon, France. Taken as a whole, these findings clarify the parameters that directly control the search time and provide transport engineers with a quantitative grasp of the parking problem. Besides, they establish formal connections between the parking issue in realistic settings and physical problems. Funding: This work was supported by IDEXLYON (IDEXLYON 2020–2021); Institut Rhonalpin des Systèmes Complexes (IXXI) (Vulnerabilite). Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2023.1206 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135504456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acknowledgment to Referees (2022) 对裁判的感谢(2022)
2区 工程技术
Transportation Science Pub Date : 2023-05-01 DOI: 10.1287/trsc.2023.1203
{"title":"Acknowledgment to Referees (2022)","authors":"","doi":"10.1287/trsc.2023.1203","DOIUrl":"https://doi.org/10.1287/trsc.2023.1203","url":null,"abstract":"We wish to thank the following individuals who acted as referees for Transportation Science in 2022. We express our apologies to those whose names we may have missed.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135289832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Electric Dial-a-Ride Problem on a Fixed Circuit 固定电路上的电拨乘问题
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-04-25 DOI: 10.1287/trsc.2023.1208
Yves Molenbruch, Kris Braekers, Ohad Eisenhandler, M. Kaspi
{"title":"The Electric Dial-a-Ride Problem on a Fixed Circuit","authors":"Yves Molenbruch, Kris Braekers, Ohad Eisenhandler, M. Kaspi","doi":"10.1287/trsc.2023.1208","DOIUrl":"https://doi.org/10.1287/trsc.2023.1208","url":null,"abstract":"Shared mobility services involving electric autonomous shuttles have increasingly been implemented in recent years. Because of various restrictions, these services are currently offered on fixed circuits and operated with fixed schedules. This study introduces a service variant with flexible stopping patterns and schedules. Specifically, in the electric dial-a-ride problem on a fixed circuit (eDARP-FC), a fleet of capacitated electric shuttles operates on a given circuit consisting of a recharging depot and a sequence of stations where passengers can be picked up and dropped off. The shuttles may perform multiple laps, between which they may need to recharge. The goal of the problem is to determine the vehicles’ stopping sequences and schedules, including recharging plans, so as to minimize a weighted sum of the total passenger excess time and the total number of laps. The eDARP-FC is formulated as a nonstandard lap-based mixed integer linear programming and is shown to be NP-Hard. Efficient polynomial time algorithms are devised for two special scheduling subproblems. These algorithms and several heuristics are then applied as subroutines within a large neighborhood search metaheuristic. Experiments on instances derived from a real-life system demonstrate that the flexible service results in a 32%–75% decrease in the excess time at the same operational costs. Funding: This work was supported by the Fonds Wetenschappelijk Onderzoek [Project Data-Driven Logistics: Grant S007318N; Project Optimizing the Design of a Hybrid Urban Mobility System: Grant G020222N; and Grant OR4Logistics]. Y. Molenbruch is partially funded by the Fonds Wetenschappelijk Onderzoek [Grant 1202719N]. The computational resources and services used in this work were provided by the Flemish Supercomputer Center funded by the Fonds Wetenschappelijk Onderzoek and the Flemish Government. Supplemental Material: The electronic companion is available at https://doi.org/10.1287/trsc.2023.1208 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46829859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multimodal Vaccine Distribution Network Design with Drones 无人机多模式疫苗配送网络设计
IF 4.6 2区 工程技术
Transportation Science Pub Date : 2023-04-25 DOI: 10.1287/trsc.2023.1205
S. Enayati, Haitao Li, James F. Campbell, Deng Pan
{"title":"Multimodal Vaccine Distribution Network Design with Drones","authors":"S. Enayati, Haitao Li, James F. Campbell, Deng Pan","doi":"10.1287/trsc.2023.1205","DOIUrl":"https://doi.org/10.1287/trsc.2023.1205","url":null,"abstract":"Childhood vaccines play a vital role in social welfare, but in hard-to-reach regions, poor transportation, and a weak cold chain limit vaccine availability. This opens the door for the use of vaccine delivery by drones (uncrewed aerial vehicles, or UAVs) with their fast transportation and reliance on little or no infrastructure. In this paper, we study the problem of strategic multimodal vaccine distribution, which simultaneously determines the locations of local distribution centers, drone bases, and drone relay stations, while obeying the cold chain time limit and drone range. Two mathematical optimization models with complementary strengths are developed. The first model considers the vaccine travel time at the aggregate level with a compact formulation, but it can be too conservative in meeting the cold chain time limit. The second model is based on the layered network framework to track the vaccine flow and travel time associated with each origin-destination (OD) pair. It allows the number of transshipments and the number of drone stops in a vaccine flow path to be limited, which reflects practical operations and can be computationally advantageous. Both models are applied for vaccine distribution network design with two types of drones in Vanuatu as a case study. Solutions with drones using our parameter settings are shown to generate large savings, with differentiated roles for large and small drones. To generalize the empirical findings and examine the performance of our models, we conduct comprehensive computational experiments to assess the sensitivity of optimal solutions and performance metrics to key problem parameters. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Association for Supply Chain Management (ASCM) and the University of Missouri Research Board (UMSL Award 0059109). Supplemental Material: The online supplement is available at https://doi.org/10.1287/trsc.2023.1205 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42229078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信