Meteorology and Atmospheric Physics最新文献

筛选
英文 中文
Analysis of a hailstorm in the south of Minas Gerais state on October 13, 2020 对 2020 年 10 月 13 日米纳斯吉拉斯州南部冰雹的分析
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-05-08 DOI: 10.1007/s00703-024-01020-4
Raquel Gonçalves Pereira, João Gabriel Martins Ribeiro, Enrique Vieira Mattos, Michelle Simões Reboita
{"title":"Analysis of a hailstorm in the south of Minas Gerais state on October 13, 2020","authors":"Raquel Gonçalves Pereira, João Gabriel Martins Ribeiro, Enrique Vieira Mattos, Michelle Simões Reboita","doi":"10.1007/s00703-024-01020-4","DOIUrl":"https://doi.org/10.1007/s00703-024-01020-4","url":null,"abstract":"<p>On October 13th, 2020, at approximately 1940 UTC, a hailstorm struck the city of Itajubá, located in the south of the Minas Gerais state, Brazil. This hailstorm produced hail with a diameter of 5 cm causing damages in roofs of houses and shelters. In this sense, the objective of this study is to describe the synoptic-scale environment that lead to the “ingredients” necessary for the mesoscale development of the storm, and to provide a description of cloud microphysical and lightning properties. Several data sources were used in this study as: surface observations, reanalysis data, and atmospheric remote sensing information. The synoptic-scale environment conducive to storm formation was associated with an inverted trough at surface and a shortwave trough at upper-level levels, which were important to organize upward movements in the atmosphere. High reflectivity (&gt; 60 dBZ) was registered in the convective cell from 1940 to 2010 UTC, according to the São Roque radar data, indicating the presence of large raindrops and/or hail on the ground. The total lightning rates increased from the beginning of the storm, reaching ~ 80 lightning/5 min around 20 min before the hail precipitation, which occurred at 1920 UTC. This study highlights the importance of associating synoptic and physical information for understanding the environment and the main features of hailstorms. It also emphasizes the significance of producing information that can aid in nowcasting tools.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Aerosol optical depth and water vapor variability assessed through autocorrelation analysis 更正:通过自相关分析评估气溶胶光学深度和水蒸气的可变性
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-05-01 DOI: 10.1007/s00703-024-01019-x
M. A. Franco, F. Morais, L. Rizzo, Rafael Palácios, Rafael Valiati, Márcio Teixeira, Luiz A. T. Machado, P. Artaxo
{"title":"Correction: Aerosol optical depth and water vapor variability assessed through autocorrelation analysis","authors":"M. A. Franco, F. Morais, L. Rizzo, Rafael Palácios, Rafael Valiati, Márcio Teixeira, Luiz A. T. Machado, P. Artaxo","doi":"10.1007/s00703-024-01019-x","DOIUrl":"https://doi.org/10.1007/s00703-024-01019-x","url":null,"abstract":"","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tele-connections of atmospheric oscillations on streamflow data in Turkey 大气振荡对土耳其水流数据的远程连接
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-04-15 DOI: 10.1007/s00703-024-01014-2
Emre Kebapcioğlu, Turgay Partal
{"title":"Tele-connections of atmospheric oscillations on streamflow data in Turkey","authors":"Emre Kebapcioğlu, Turgay Partal","doi":"10.1007/s00703-024-01014-2","DOIUrl":"https://doi.org/10.1007/s00703-024-01014-2","url":null,"abstract":"<p>The climate indices demonstrate temporal and spatial variability of large-scale ocean–atmosphere patterns. This study has been carried out to analyze the streamflow data in Turkey to understand the effects of climate indices such as the Southern Oscillation (SO), the North Atlantic Oscillation (NAO), and the Arctic Oscillation (AO). The periodical relationship of the streamflow data of Turkey over different atmospheric oscillations was investigated. For this purpose, the average annual and seasonal flows at the current 72 stations in other regions of Turkey have been studied. In this context, the correlation analysis determined the relationship between NAO, AO, SO indices, and stream-flows. Besides, the original observed data were separated into parts by discrete wavelet transform to obtain the periodic components. The correlations between the found periodical components and atmospheric indices were also examined. The correlations between the streamflow and the AO/NAO showed a strong negative relationship during the annual/winter and spring periods, especially in western Turkey. Besides, the periodic components showed us the multi-annual connections between the global indices and the streamflow data of Turkey.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate forecast skill and teleconnections on seasonal time scales over Central Africa based on the North American Multi-Model Ensemble (NMME) 基于北美多模式集合(NMME)的中部非洲季节性时间尺度上的气候预测技能和远程联系
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-04-05 DOI: 10.1007/s00703-024-01018-y
Roméo S. Tanessong, Thierry C. Fotso-Nguemo, Samuel Kaissassou, G. M. Guenang, A. J. Komkoua Mbienda, Lucie A. Djiotang Tchotchou, Armand F. Tchinda, Derbetini A. Vondou, Wilfried M. Pokam, Pascal M. Igri, Zéphirin D. Yepdo
{"title":"Climate forecast skill and teleconnections on seasonal time scales over Central Africa based on the North American Multi-Model Ensemble (NMME)","authors":"Roméo S. Tanessong, Thierry C. Fotso-Nguemo, Samuel Kaissassou, G. M. Guenang, A. J. Komkoua Mbienda, Lucie A. Djiotang Tchotchou, Armand F. Tchinda, Derbetini A. Vondou, Wilfried M. Pokam, Pascal M. Igri, Zéphirin D. Yepdo","doi":"10.1007/s00703-024-01018-y","DOIUrl":"https://doi.org/10.1007/s00703-024-01018-y","url":null,"abstract":"<p>This study examines the skill of the North American Multi-Model Ensemble (NMME) seasonal precipitation forecast and the influence of tropical sea surface temperature (SST) anomalies and their teleconnections on precipitation prediction skill over Central Africa (CA). The skill is assessed for December–February (DJF), March–May (MAM), June–August (JJA), and September–November (SON) seasons, at 0-, 3-, and 6- month lead time. Results show that for all seasons and at all lead times, models used in this study have tendency to overestimate the observed SSTs over the tropical areas. The multi-model ensemble mean (MME) generally succeeds in capturing the spatial differences in the seasonal mean climatology of precipitation and clearly determines the bi-modal and uni-modal natures of observed precipitation over CA. The El Ninõ-Southern Oscillation 3.4 index (Ninõ3.4), Indian Ocean Dipole (IOD) western pole index (IODWP), and IOD eastern pole index (IODEP) teleconnections with tropical SST are well represented by the MME at all seasons and lead times with a pattern correlation coefficient (PCC) &gt;0.6. The quality of these teleconnections decreases when the lead time increases. The Ninõ3.4-induced precipitation’s teleconnection is better represented in MAM at all lead times, and it is found that precipitation is reinforced over northern CA during the El Ninõ years and weakened during the La Niña years. IODWP and IODEP teleconnections with CA precipitation are well represented in MAM and SON, with PCC &gt; 0.8. The IODWP and IODEP could be a very good indicators to predict the increase or decrease of precipitation in CA during MAM and SON seasons.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of climate teleconnections on hydrological drought in the Sahel Region of Nigeria (SRN) 气候远程联系对尼日利亚萨赫勒地区(SRN)水文干旱的影响
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-04-05 DOI: 10.1007/s00703-024-01016-0
Akinwale T. Ogunrinde, Israel Emmanuel, David A. Olasehinde, Oluwaseun T. Faloye, Toju Babalola, Iyanda M. Animashaun
{"title":"Impact of climate teleconnections on hydrological drought in the Sahel Region of Nigeria (SRN)","authors":"Akinwale T. Ogunrinde, Israel Emmanuel, David A. Olasehinde, Oluwaseun T. Faloye, Toju Babalola, Iyanda M. Animashaun","doi":"10.1007/s00703-024-01016-0","DOIUrl":"https://doi.org/10.1007/s00703-024-01016-0","url":null,"abstract":"<p>Understanding the spatial and temporal patterns of drought and their connection with major climate indices is crucial for creating early warning and drought mitigation strategies. This study analyzed hydrological drought variability and its association with global climate indices in the Sahel Region of Nigeria. Before conducting drought analysis, temperature and precipitation data were verified for consistency using three homogeneity tests. The study utilized six synoptic stations across the area to identify drought periods through the Standardized Precipitation Evapotranspiration Index (SPEI). Drought characteristics such as duration, severity, and amplitude were examined using SPEI data. Trend and variability in drought patterns were assessed with Mann–Kendall trend analysis and wavelet analysis, respectively. The relationship between large climate indices and drought was explored using Pearson correlation analysis. Trend analysis indicated an increase in drought occurrences, with significant findings in four stations. Wavelet analysis identified the 2–4 and 4–8 year bands as crucial for understanding SPEI drought patterns. Correlation analysis showed the influence of various climate trends on concurrent climate events, ranking the impact of climate indices on drought as MEI/SOI &gt; NAO &gt; AMO &gt; DMI. Coherence analysis found significant correlations between ENSO and SPEI, and NAO and SPEI, in the 2–7 and &gt; 8-year bands, respectively. Phase differences suggested that severe wet and dry periods align with La Nina and El Nino events, with strong El Nino events and AMO negative phases mainly causing severe droughts in the area.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climatological standard normals of IRAN, for the period 1981–2010 and 1991–2020: precipitation and temperature 伊朗 1981-2010 年和 1991-2020 年期间的气候标准模式:降水和气温
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-04-03 DOI: 10.1007/s00703-024-01013-3
Zohreh Javanshiri, Mohsen Rahmdel
{"title":"Climatological standard normals of IRAN, for the period 1981–2010 and 1991–2020: precipitation and temperature","authors":"Zohreh Javanshiri, Mohsen Rahmdel","doi":"10.1007/s00703-024-01013-3","DOIUrl":"https://doi.org/10.1007/s00703-024-01013-3","url":null,"abstract":"<p>The main functions of climate normals are twofold. They offer a reference point for evaluating recent or ongoing observations and form the basis for various climate datasets that rely on anomalies. Additionally, they are frequently employed to predict the probable conditions that one might encounter in a specific area. The World Meteorological Organization (WMO) advises regularly reviewing climate normals every decade to keep up with the evolving climate. Atmospheric Science and Meteorological Research Center (ASMERC) is proud to release “Iran Climate Normals” for the periods of 1981–2010 and 1991–2020 including a suite of monthly and annual statistics that are based on temperature, precipitation, sea-level pressure, vapor pressure, station-level pressure, snow-depth, wind speed, visibility, soil temperature, relative humidity, dew point, and cloud amount measurements. This study documents the procedures used for quality control, homogenization of daily observations, and calculation of normal values. For each station and each parameter, the results of the outliers due to the error and the homogeneity assessment are reported. Out of all the parameters, the soil temperature has the highest error percentage. However, this does not necessarily imply that it has the most measurement errors; it could be due to the ease of detecting errors for this specific parameter. Of the 143 stations, 56 had a breakpoint recorded in two parameters or more at a specific point in time. According to the analysis of the temperature and precipitation parameters, (a) the new normal of mean, maximum, and minimum temperatures are 0.47, 0.5, and 0.6 °C above the 1981–2010 period; (b) the normal annual precipitation has increased by an average of 5.4 mm in 1991–2020 compared to 1981–2010; (c) comparing the two periods, the changes in precipitation normals vary in different parts of Iran and different months, while the temperature normals increase in all stations across Iran except for four stations (Gorgan, Kerman, Shiraz, Bandar-e Lengeh); (d) changes in the fourth quintile of monthly precipitation are more than average, and minimum temperature changes are higher than maximum and mean temperatures; and (e) generally, the latter period is characterized by a warmer climate almost across Iran, wetter conditions over the Zagros mountain range and the western part of the Caspian Sea coasts, and drier conditions over the east, center, and west of Iran.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia 根据埃塞俄比亚各地的观测结果评估 ERA5 和 CHIRPS 的降雨量估计值
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-04-03 DOI: 10.1007/s00703-024-01008-0
{"title":"Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia","authors":"","doi":"10.1007/s00703-024-01008-0","DOIUrl":"https://doi.org/10.1007/s00703-024-01008-0","url":null,"abstract":"<h3>Abstract</h3> <p>Satellite-based precipitation estimates and global reanalysis products bear the promise of supporting the development of accurate and timely climate information for end users in sub-Sharan Africa. The accuracy of these global models, however, may be reduced in data-scarce regions and should be carefully evaluated. This study evaluates the performance of ERA5 reanalysis data and CHIRPS precipitation data against ground-based measurements from 167 rain gauges in Ethiopia, a region with complex topography and diverse climates. Focusing over a 38-year period (1981–2018), our study utilizes a point-to-pixel analysis to compare daily, monthly, seasonal, and annual precipitation data, conducting an evaluation based on continuous and categorical metrics. Our findings indicate that over Ethiopia CHIRPS generally outperforms ERA5, particularly in high-altitude areas, demonstrating a better capability in detecting high-intensity rainfall events. Both datasets, however, exhibit lower performance in Ethiopia's lowland regions, possibly the influence of sparse rain gauge networks informing gridded datasets. Notably, both CHIRPS and ERA5 were found to underestimate rainfall variability, with CHIRPS displaying a slight advantage in representing the erratic nature of Ethiopian rainfall. The study’s results highlight considerable performance differences between CHIRPS and ERA5 across varying Ethiopian landscapes and climatic conditions. CHIRPS’ effectiveness in high-altitude regions, especially for daily rainfall estimation, emphasizes its suitability in similar geographic contexts. Conversely, the lesser performance of ERA5 in these areas suggests a need for refined calibration and validation processes, particularly for complex terrains. These insights are essential for the application of satellite-based and reanalysis of rainfall data in meteorological, agricultural, and hydrological contexts, particularly in topographically and climatically diverse regions.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A case study on the impact of real-time land cover changes in the intertidal zone on coastal meteorological predictions using a coupled atmosphere–ocean model 利用大气-海洋耦合模式开展潮间带土地覆被实时变化对沿岸气象预测影响的案例研究
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-03-31 DOI: 10.1007/s00703-024-01009-z
Eun-A Ko, Sang-Keun Song, S. Moon, Zang-Ho Shon, Taekyun Kim, Seoung Soo Lee
{"title":"A case study on the impact of real-time land cover changes in the intertidal zone on coastal meteorological predictions using a coupled atmosphere–ocean model","authors":"Eun-A Ko, Sang-Keun Song, S. Moon, Zang-Ho Shon, Taekyun Kim, Seoung Soo Lee","doi":"10.1007/s00703-024-01009-z","DOIUrl":"https://doi.org/10.1007/s00703-024-01009-z","url":null,"abstract":"","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140361129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol optical depth and water vapor variability assessed through autocorrelation analysis 通过自相关分析评估气溶胶光学深度和水蒸气的可变性
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-03-31 DOI: 10.1007/s00703-024-01011-5
M. A. Franco, F. Morais, L. Rizzo, Rafael Palácios, Rafael Valiati, Márcio Teixeira, Luiz A. T. Machado, P. Artaxo
{"title":"Aerosol optical depth and water vapor variability assessed through autocorrelation analysis","authors":"M. A. Franco, F. Morais, L. Rizzo, Rafael Palácios, Rafael Valiati, Márcio Teixeira, Luiz A. T. Machado, P. Artaxo","doi":"10.1007/s00703-024-01011-5","DOIUrl":"https://doi.org/10.1007/s00703-024-01011-5","url":null,"abstract":"","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140360167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observed heatwaves characteristics and variability over Saudi Arabia 沙特阿拉伯上空观测到的热浪特征和变异性
IF 2 4区 地球科学
Meteorology and Atmospheric Physics Pub Date : 2024-03-28 DOI: 10.1007/s00703-024-01010-6
F. S. Syed, M. A. Al-Azemi, A. Zamreeq, M. Nazrul Islam, A. Ghulam
{"title":"Observed heatwaves characteristics and variability over Saudi Arabia","authors":"F. S. Syed, M. A. Al-Azemi, A. Zamreeq, M. Nazrul Islam, A. Ghulam","doi":"10.1007/s00703-024-01010-6","DOIUrl":"https://doi.org/10.1007/s00703-024-01010-6","url":null,"abstract":"<p>Heat waves are prolonged periods of excessively hot weather, which can have significant impacts on human health, agriculture, and the environment. Climate change has been linked to an increase in the frequency, intensity, and duration of heat waves. As the global average temperature rises, heat waves are becoming more common and more severe. The Arabian Peninsula is warming at a faster rate as compared to the globe in the recent decades. In this paper, the mild, moderate, severe, and extreme heat waves defined by 85th, 90th, 95th and 99th percentile, respectively, are analyzed over Saudi Arabia using historical daily maximum and minimum temperature observations for the period 1985–2021. The large number of mild heat waves are observed all over Saudi Arabia while extreme heat waves are dominant in the northwestern region. Moderate and severe heat waves are observed less in both the Red Sea and the Arabian Gulf coastal regions. The heat waves are intense in the northern and central areas as compared to other regions of the country. Heat wave frequency, intensity and length in Saudi Arabia are in increasing trends, along with the increase in the heat wave season length. Heat wave frequency and intensity are largely observed during the ENSO La Nina and neutral phases along with NAO negative phase as well as IOD negative and neutral phases. However, further investigation is required to see the occurrence of heat waves in different climate zones over Saudi Arabia at various seasons and their teleconnection to large-scale circulations.</p>","PeriodicalId":51132,"journal":{"name":"Meteorology and Atmospheric Physics","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140314141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信