International Journal of Quantum Information最新文献

筛选
英文 中文
A robust hybrid receiver for binary phase-shift keying discrimination in the presence of phase noise 在存在相位噪声的情况下用于二进制相移键控辨别的稳健混合接收器
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2024-03-21 DOI: 10.1142/s0219749924500084
Michele N. Notarnicola, Stefano Olivares
{"title":"A robust hybrid receiver for binary phase-shift keying discrimination in the presence of phase noise","authors":"Michele N. Notarnicola, Stefano Olivares","doi":"10.1142/s0219749924500084","DOIUrl":"https://doi.org/10.1142/s0219749924500084","url":null,"abstract":"<p>We address the problem of coherent state discrimination in the presence of phase diffusion. We investigate the role of the HYbrid Near-Optimum Receiver (HYNORE) we proposed in [<i>J. Opt. Soc. Am. B</i><b>40</b> (2023) 705] in the task of mitigating the noise impact. We prove the HYNORE to be a robust receiver, outperforming the Displacement Photon-Number-Resolving (DPNR) receiver and beating the standard quantum limit in particular regimes. We introduce the maximum tolerable phase noise <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>σ</mi></math></span><span></span><sub>max</sub> as a figure of merit for the receiver robustness and show that HYNORE increases its value with respect to the DPNR receiver.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"108 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular automaton ontology, bits, qubits and the Dirac equation 细胞自动机本体、比特、量子比特和狄拉克方程
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2024-03-18 DOI: 10.1142/s0219749924500138
Hans-Thomas Elze
{"title":"Cellular automaton ontology, bits, qubits and the Dirac equation","authors":"Hans-Thomas Elze","doi":"10.1142/s0219749924500138","DOIUrl":"https://doi.org/10.1142/s0219749924500138","url":null,"abstract":"<p>Cornerstones of the <i>Cellular Automaton Interpretation of Quantum Mechanics</i> are its ontological states that evolve by permutations, in this way never creating would-be quantum mechanical superposition states. We review and illustrate this with a classical Ising spin chain. It is shown that it can be related to the Weyl equation in the continuum limit. Yet, the model of discrete spins or bits unavoidably becomes a model of qubits by generating superpositions, if only slightly deformed. We study modifications of its signal velocity which, however, do not relate to mass terms. To incorporate the latter, we consider the Dirac equation in 1+1 dimensions and sketch an underlying discrete deterministic “necklace of necklaces” automaton that qualifies as ontological.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"29 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel quantum multiparty blind signature scheme based on χ state 基于 χ 状态的新型量子多方盲签名方案
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2024-03-13 DOI: 10.1142/s0219749924500114
Xingjia Wei, Shuangshuang Luo, Depeng Meng, Dianjun Lu, Zhihui Li
{"title":"A novel quantum multiparty blind signature scheme based on χ state","authors":"Xingjia Wei, Shuangshuang Luo, Depeng Meng, Dianjun Lu, Zhihui Li","doi":"10.1142/s0219749924500114","DOIUrl":"https://doi.org/10.1142/s0219749924500114","url":null,"abstract":"<p>Quantum digital signature, as an extension of classical digital signature, has become an important research content in quantum cryptography. Quantum blind signature combines the advantages of classical blind signature and quantum signature, which can ensure the unconditional security of the scheme based on the realization of the blinded signature of the message, and can be effectively applied in many real-world scenarios. This paper uses the four-particle <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> state as a communication channel, combined with quantum teleportation technology to propose a new quantum multi-party blind signature protocol, which has the following characteristics: First, the Toeplitz hash function based on the linear shift register is introduced to blind the message, and the length of the blinded message can be adjusted according to the actual demand to increase the flexibility of the scheme; Second, through multi-party participation, the blind signature of multi-bit messages can be realized, and the signature efficiency can be improved. Compared with other quantum blind signatures, the signature efficiency has been greatly improved; Finally, using the four-particle <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> state as a quantum channel can make the scheme use fewer resources to transmit data and increases the security of the scheme. Through security analysis, it can be seen that the scheme has blindness, nonrepudiation and unforgeability.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"23 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum Zeno effect: A qutrit controlled by a qubit 量子芝诺效应由量子比特控制的量子晶体
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2024-02-28 DOI: 10.1142/s0219749924500060
Komal Kumari, Garima Rajpoot, Sudhir Ranjan Jain
{"title":"Quantum Zeno effect: A qutrit controlled by a qubit","authors":"Komal Kumari, Garima Rajpoot, Sudhir Ranjan Jain","doi":"10.1142/s0219749924500060","DOIUrl":"https://doi.org/10.1142/s0219749924500060","url":null,"abstract":"<p>For a three-level system monitored by an ancilla, we show that the quantum Zeno effect can be employed to control quantum jump for error correction. Further, we show that we can realize cNOT gate, and effect dense coding and teleportation using a three-level system with an ancilla. We believe that this work paves the way to generalize the control of a qudit.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"56 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarking a neutral-atom quantum computer 中性原子量子计算机的基准测试
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2024-02-17 DOI: 10.1142/s0219749924500011
N. Wagner, C. Poole, T. M. Graham, M. Saffman
{"title":"Benchmarking a neutral-atom quantum computer","authors":"N. Wagner, C. Poole, T. M. Graham, M. Saffman","doi":"10.1142/s0219749924500011","DOIUrl":"https://doi.org/10.1142/s0219749924500011","url":null,"abstract":"<p>In this study, we simulated the algorithmic performance of a small neutral atom quantum computer and compared its performance when operating with all-to-all versus nearest-neighbor connectivity. This comparison was made using a suite of algorithmic benchmarks developed by the Quantum Economic Development Consortium. Circuits were simulated with a noise model consistent with experimental data from [<i>Nature</i><b>604</b>, 457 (2022)]. We find that all-to-all connectivity improves simulated circuit fidelity by <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>0</mn><mo>%</mo></math></span><span></span>–<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>5</mn><mo>%</mo></math></span><span></span>, compared to nearest-neighbor connectivity.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"38 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140072120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and noise-robust quantum state tomography based on ELM 基于 ELM 的快速稳噪量子态层析成像技术
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2024-01-19 DOI: 10.1142/s0219749923500521
Xiao-Dong Wu, Shuang Cong
{"title":"Fast and noise-robust quantum state tomography based on ELM","authors":"Xiao-Dong Wu, Shuang Cong","doi":"10.1142/s0219749923500521","DOIUrl":"https://doi.org/10.1142/s0219749923500521","url":null,"abstract":"<p>This paper proposed a quantum state tomography approach based on the extreme learning machine (ELM), which is available in the reconstruction of quantum states via a lightweight neural network. The key step of the proposed tomography approach is to employ the ELM to approximate the complex mapping between the measurement values sequence and the real density matrix. After obtaining the output of the ELM-based estimator, a matrix transformation technique is used to make the network outputs satisfy quantum state constraints. Compared with deep learning-based tomography approaches, our proposed ELM-based approach enables both high-fidelity and high-efficiency quantum state tomography with only one training process under the condition of very few numbers of training samples, network layers and hidden layer nodes. In addition, the proposed tomography approach is robust to noisy measurement values, since the ELM-based estimator is quite lightweight. Simulations on the tomography of eigenstates, superposition states and mixed states are presented to verify our theoretical findings. Also, the superiority of the ELM-based tomography approach is demonstrated in comparison with that based on the radial basis function network, convolutional neural network and maximum likelihood estimation approach.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"298 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Verifiable multi-party quantum secret sharing based on GHZ states 基于 GHZ 状态的可验证多方量子秘密共享
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2023-12-15 DOI: 10.1142/s021974992350048x
Weijie Su, Haozhen Situ, Qiong Huang, Cai Zhang
{"title":"Verifiable multi-party quantum secret sharing based on GHZ states","authors":"Weijie Su, Haozhen Situ, Qiong Huang, Cai Zhang","doi":"10.1142/s021974992350048x","DOIUrl":"https://doi.org/10.1142/s021974992350048x","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"14 4","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical and Simulation Investigation of Practical QKD for both BB84 and SARG04 Protocols 针对 BB84 和 SARG04 协议的实用 QKD 理论与仿真研究
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2023-12-15 DOI: 10.1142/s0219749923500508
B. Djaouida, Sellami Ali
{"title":"Theoretical and Simulation Investigation of Practical QKD for both BB84 and SARG04 Protocols","authors":"B. Djaouida, Sellami Ali","doi":"10.1142/s0219749923500508","DOIUrl":"https://doi.org/10.1142/s0219749923500508","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"121 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138997516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing two entropy functions of a quantum channel 比较量子通道的两个熵函数
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2023-12-15 DOI: 10.1142/s0219749923500491
Junfang Cheng, Yanjun Chu, Fang Huang
{"title":"Comparing two entropy functions of a quantum channel","authors":"Junfang Cheng, Yanjun Chu, Fang Huang","doi":"10.1142/s0219749923500491","DOIUrl":"https://doi.org/10.1142/s0219749923500491","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"24 40","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139000811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classifying Entanglement by Algebraic Geometry 用代数几何对纠缠进行分类
IF 1.2 4区 物理与天体物理
International Journal of Quantum Information Pub Date : 2023-12-01 DOI: 10.1142/s0219749923500478
M. Gharahi
{"title":"Classifying Entanglement by Algebraic Geometry","authors":"M. Gharahi","doi":"10.1142/s0219749923500478","DOIUrl":"https://doi.org/10.1142/s0219749923500478","url":null,"abstract":"","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"29 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信