{"title":"量子芝诺效应由量子比特控制的量子晶体","authors":"Komal Kumari, Garima Rajpoot, Sudhir Ranjan Jain","doi":"10.1142/s0219749924500060","DOIUrl":null,"url":null,"abstract":"<p>For a three-level system monitored by an ancilla, we show that the quantum Zeno effect can be employed to control quantum jump for error correction. Further, we show that we can realize cNOT gate, and effect dense coding and teleportation using a three-level system with an ancilla. We believe that this work paves the way to generalize the control of a qudit.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Zeno effect: A qutrit controlled by a qubit\",\"authors\":\"Komal Kumari, Garima Rajpoot, Sudhir Ranjan Jain\",\"doi\":\"10.1142/s0219749924500060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a three-level system monitored by an ancilla, we show that the quantum Zeno effect can be employed to control quantum jump for error correction. Further, we show that we can realize cNOT gate, and effect dense coding and teleportation using a three-level system with an ancilla. We believe that this work paves the way to generalize the control of a qudit.</p>\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749924500060\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749924500060","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Quantum Zeno effect: A qutrit controlled by a qubit
For a three-level system monitored by an ancilla, we show that the quantum Zeno effect can be employed to control quantum jump for error correction. Further, we show that we can realize cNOT gate, and effect dense coding and teleportation using a three-level system with an ancilla. We believe that this work paves the way to generalize the control of a qudit.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.