{"title":"Time-dependent modelling of thin poroelastic films drying on deformable plates","authors":"M. Hennessy, R. Craster, O. Matar","doi":"10.1017/s0956792523000062","DOIUrl":"https://doi.org/10.1017/s0956792523000062","url":null,"abstract":"\u0000 Understanding the generation of mechanical stress in drying, particle-laden films is important for a wide range of industrial processes. One way to study these stresses is through the cantilever experiment, whereby a thin film is deposited onto the surface of a thin plate that is clamped at one end to a wall. The stresses that are generated in the film during drying are transmitted to the plate and drive bending. Mathematical modelling enables the film stress to be inferred from measurements of the plate deflection. The aim of this paper is to present simplified models of the cantilever experiment that have been derived from the time-dependent equations of continuum mechanics using asymptotic methods. The film is described using nonlinear poroelasticity and the plate using nonlinear elasticity. In contrast to Stoney-like formulae, the simplified models account for films with non-uniform thickness and stress. The film model reduces to a single differential equation that can be solved independently of the plate equations. The plate model reduces to an extended form of the Föppl-von Kármán (FvK) equations that accounts for gradients in the longitudinal traction acting on the plate surface. Consistent boundary conditions for the FvK equations are derived by resolving the Saint-Venant boundary layers at the free edges of the plate. The asymptotically reduced models are in excellent agreement with finite element solutions of the full governing equations. As the Péclet number increases, the time evolution of the plate deflection changes from \u0000 \u0000 \u0000 \u0000$t$\u0000\u0000 \u0000 to \u0000 \u0000 \u0000 \u0000$t^{1/2}$\u0000\u0000 \u0000 , in agreement with experiments.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44569311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Bakhti, I. Gasser, Stefan Dipl.-Ing. Schuster, E. Parfenov
{"title":"Modelling, simulation and optimisation of parabolic trough power plants","authors":"H. Bakhti, I. Gasser, Stefan Dipl.-Ing. Schuster, E. Parfenov","doi":"10.1017/S0956792522000274","DOIUrl":"https://doi.org/10.1017/S0956792522000274","url":null,"abstract":"We present a mathematical model built to describe the fluid dynamics for the heat transfer fluid in a parabolic trough power plant. Such a power plant consists of a network of tubes for the heat transport fluid. In view of optimisation tasks in the planning and in the operational phase, it is crucial to find a compromise between a very detailed description of many possible physical phenomena and a necessary simplicity needed for a fast and robust computational approach. We present the model, a numerical approach, simulation for single tubes and also for realistic network settings. In addition, we optimise the power output with respect to the operational parameters.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47570795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Friedlander-Keller ray expansions in electromagnetism: Monochromatic radiation from arbitrary surfaces in three dimensions","authors":"A. Radjen, R. Tew, G. Gradoni","doi":"10.1017/s0956792522000249","DOIUrl":"https://doi.org/10.1017/s0956792522000249","url":null,"abstract":"The standard approach to applying ray theory to solving Maxwell’s equations in the large wave-number limit involves seeking solutions that have (i) an oscillatory exponential with a phase term that is linear in the wave-number and (ii) has an amplitude profile expressed in terms of inverse powers of that wave-number. The Friedlander–Keller modification includes an additional power of this wave-number in the phase of the wave structure, and this additional term is crucial when analysing certain wave phenomena such as creeping and whispering gallery wave propagation. However, other wave phenomena necessitate a generalisation of this theory. The purposes of this paper are to provide a ‘generalised’ Friedlander–Keller ray ansatz for Maxwell’s equations to obtain a new set of field equations for the various phase terms and amplitude of the wave structure; these are then solved subject to boundary data conforming to wave-fronts that are either specified or general. These examples specifically require this generalisation as they are not amenable to classic ray theory.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46519439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a class of nonlocal continuity equations on graphs","authors":"A. Esposito, F. Patacchini, A. Schlichting","doi":"10.1017/S0956792523000128","DOIUrl":"https://doi.org/10.1017/S0956792523000128","url":null,"abstract":"\u0000 Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46649844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterising small objects in the regime between the eddy current model and wave propagation","authors":"P. Ledger, W. Lionheart","doi":"10.1017/s0956792523000207","DOIUrl":"https://doi.org/10.1017/s0956792523000207","url":null,"abstract":"\u0000 Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42144949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Projective invariants of images","authors":"P. Olver","doi":"10.1017/S0956792522000298","DOIUrl":"https://doi.org/10.1017/S0956792522000298","url":null,"abstract":"The method of equivariant moving frames is employed to construct and completely classify the differential invariants for the action of the projective group on functions defined on the two-dimensional projective plane. While there are four independent differential invariants of order \u0000$leq 3$\u0000 , it is proved that the algebra of differential invariants is generated by just two of them through invariant differentiation. The projective differential invariants are, in particular, of importance in image processing applications.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46099681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry actions and brackets for adjoint-symmetries. II: Physical examples","authors":"S. Anco","doi":"10.1017/S0956792522000328","DOIUrl":"https://doi.org/10.1017/S0956792522000328","url":null,"abstract":"Abstract Symmetries and adjoint-symmetries are two fundamental (coordinate-free) structures of PDE systems. Recent work has developed several new algebraic aspects of adjoint-symmetries: three fundamental actions of symmetries on adjoint-symmetries; a Lie bracket on the set of adjoint-symmetries given by the range of a symmetry action; a generalised Noether (pre-symplectic) operator constructed from any non-variational adjoint-symmetry. These results are illustrated here by considering five examples of physically interesting nonlinear PDE systems – nonlinear reaction-diffusion equations, Navier-Stokes equations for compressible viscous fluid flow, surface-gravity water wave equations, coupled solitary wave equations and a nonlinear acoustic equation.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48776142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence to a self-similar solution for a one-phase Stefan problem arising in corrosion theory","authors":"M. Bouguezzi, D. Hilhorst, Y. Miyamoto, J. Scheid","doi":"10.1017/s0956792522000250","DOIUrl":"https://doi.org/10.1017/s0956792522000250","url":null,"abstract":"Steel corrosion plays a central role in different technological fields. In this article, we consider a simple case of a corrosion phenomenon which describes a pure iron dissolution in sodium chloride. This article is devoted to prove rigorously that under rather general hypotheses on the initial data, the solution of this iron dissolution model converges to a self-similar profile as \u0000 \u0000 \u0000 \u0000$trightarrow +infty$\u0000\u0000 \u0000 . We will do so for an equivalent formulation as presented in the book of Avner Friedman about parabolic equations (Friedman (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ.). In order to prove the convergence result, we apply a comparison principle together with suitable upper and lower solutions.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41326672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hertzian and adhesive plane models of contact of two inhomogeneous elastic bodies","authors":"Y. Antipov, S. Mkhitaryan","doi":"10.1017/s0956792522000237","DOIUrl":"https://doi.org/10.1017/s0956792522000237","url":null,"abstract":"Previous study of contact of power-law graded materials concerned the contact of a rigid body (punch) with an elastic inhomogeneous foundation whose inhomogeneity is characterised by the Young modulus varying with depth as a power function. This paper models Hertzian and adhesive contact of two elastic inhomogeneous power-law graded bodies with different exponents. The problem is governed by an integral equation with two different power kernels. A nonstandard method of Gegenbauer orthogonal polynomials for its solution is proposed. It leads to an infinite system of linear algebraic equations of a special structure. The integral representations of the system coefficients are evaluated, and the properties of the system are studied. It is shown that if the exponents coincide, the infinite system admits a simple exact solution that corresponds to the case when the Young moduli are different but the exponents are the same. Formulas for the length of the contact zone, the pressure distribution and the surface normal displacements of the contacting bodies are obtained in the form convenient for computations. Effects of the mismatch in the Young moduli exponents are studied. A comparative analysis of the Hertzian and adhesive contact models clarifies the effects of the surface energy density on the contact pressure, the contact zone size and the profile of the contacting bodies outside the contact area.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45831338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Profiling ponded soil surface in saturated seepage into drain-line sink: Kalashnikov’s method of lateral leaching revisited","authors":"A. Kacimov, Y. Obnosov","doi":"10.1017/s0956792522000171","DOIUrl":"https://doi.org/10.1017/s0956792522000171","url":null,"abstract":"Two boundary value problems are solved for potential steady-state 2D Darcian seepage flows towards a line sink in a homogeneous isotropic soil from a ponded land surface, which is not flat but profiled. The aim of this shaping is ‘uniformisation’ of the velocity and travel time between this surface and a horizontal drain modelled by a line sink. The complex potential domain is a half-strip, which is mapped onto a reference plane. Either the velocity magnitude or a vertical coordinate along the land surface are control variables. Either a complexified velocity or complex physical coordinate is reconstructed by solving mixed boundary-value problems with the help of the Keldysh-Sedov formula via singular integrals, the kernel of which are the control functions. The flow nets, isotachs and breakthrough curves are found by computer algebra routines. A designed soil hump above the drain ameliorates an unwanted ‘preferential flow’ (shortcut) and improves leaching of salinised soil of a cropfield during a pre-cultivation season.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43076741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}