{"title":"On a class of nonlocal continuity equations on graphs","authors":"A. Esposito, F. Patacchini, A. Schlichting","doi":"10.1017/S0956792523000128","DOIUrl":"https://doi.org/10.1017/S0956792523000128","url":null,"abstract":"\u0000 Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46649844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterising small objects in the regime between the eddy current model and wave propagation","authors":"P. Ledger, W. Lionheart","doi":"10.1017/s0956792523000207","DOIUrl":"https://doi.org/10.1017/s0956792523000207","url":null,"abstract":"\u0000 Being able to characterise objects at low frequencies, but in situations where the modelling error in the eddy current approximation of the Maxwell system becomes large, is important for improving current metal detection technologies. Importantly, the modelling error becomes large as the frequency increases, but the accuracy of the eddy current model also depends on the object topology and on its materials, with the error being much larger for certain geometries compared to others of the same size and materials. Additionally, the eddy current model breaks down at much smaller frequencies for highly magnetic conducting materials compared to non-permeable objects (with similar conductivities, sizes and shapes) and, hence, characterising small magnetic objects made of permeable materials using the eddy current at typical frequencies of operation for a metal detector is not always possible. To address this, we derive a new asymptotic expansion for permeable highly conducting objects that is valid for small objects and holds not only for frequencies where the eddy current model is valid but also for situations where the eddy current modelling error becomes large and applying the eddy approximation would be invalid. The leading-order term we derive leads to new forms of object characterisations in terms of polarizability tensor object descriptions where the coefficients can be obtained from solving vectorial transmission problems. We expect these new characterisations to be important when considering objects at greater stand-off distance from the coils, which is important for safety critical applications, such as the identification of landmines, unexploded ordnance and concealed weapons. We also expect our results to be important when characterising artefacts of archaeological and forensic significance at greater depths than the eddy current model allows and to have further applications parking sensors and improving the detection of hidden, out-of-sight, metallic objects.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42144949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Projective invariants of images","authors":"P. Olver","doi":"10.1017/S0956792522000298","DOIUrl":"https://doi.org/10.1017/S0956792522000298","url":null,"abstract":"The method of equivariant moving frames is employed to construct and completely classify the differential invariants for the action of the projective group on functions defined on the two-dimensional projective plane. While there are four independent differential invariants of order \u0000$leq 3$\u0000 , it is proved that the algebra of differential invariants is generated by just two of them through invariant differentiation. The projective differential invariants are, in particular, of importance in image processing applications.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"34 1","pages":"936 - 946"},"PeriodicalIF":1.9,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46099681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry actions and brackets for adjoint-symmetries. II: Physical examples","authors":"S. Anco","doi":"10.1017/S0956792522000328","DOIUrl":"https://doi.org/10.1017/S0956792522000328","url":null,"abstract":"Abstract Symmetries and adjoint-symmetries are two fundamental (coordinate-free) structures of PDE systems. Recent work has developed several new algebraic aspects of adjoint-symmetries: three fundamental actions of symmetries on adjoint-symmetries; a Lie bracket on the set of adjoint-symmetries given by the range of a symmetry action; a generalised Noether (pre-symplectic) operator constructed from any non-variational adjoint-symmetry. These results are illustrated here by considering five examples of physically interesting nonlinear PDE systems – nonlinear reaction-diffusion equations, Navier-Stokes equations for compressible viscous fluid flow, surface-gravity water wave equations, coupled solitary wave equations and a nonlinear acoustic equation.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"34 1","pages":"974 - 997"},"PeriodicalIF":1.9,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48776142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Convergence to a self-similar solution for a one-phase Stefan problem arising in corrosion theory","authors":"M. Bouguezzi, D. Hilhorst, Y. Miyamoto, J. Scheid","doi":"10.1017/s0956792522000250","DOIUrl":"https://doi.org/10.1017/s0956792522000250","url":null,"abstract":"Steel corrosion plays a central role in different technological fields. In this article, we consider a simple case of a corrosion phenomenon which describes a pure iron dissolution in sodium chloride. This article is devoted to prove rigorously that under rather general hypotheses on the initial data, the solution of this iron dissolution model converges to a self-similar profile as \u0000 \u0000 \u0000 \u0000$trightarrow +infty$\u0000\u0000 \u0000 . We will do so for an equivalent formulation as presented in the book of Avner Friedman about parabolic equations (Friedman (1964) Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ.). In order to prove the convergence result, we apply a comparison principle together with suitable upper and lower solutions.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41326672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hertzian and adhesive plane models of contact of two inhomogeneous elastic bodies","authors":"Y. Antipov, S. Mkhitaryan","doi":"10.1017/s0956792522000237","DOIUrl":"https://doi.org/10.1017/s0956792522000237","url":null,"abstract":"Previous study of contact of power-law graded materials concerned the contact of a rigid body (punch) with an elastic inhomogeneous foundation whose inhomogeneity is characterised by the Young modulus varying with depth as a power function. This paper models Hertzian and adhesive contact of two elastic inhomogeneous power-law graded bodies with different exponents. The problem is governed by an integral equation with two different power kernels. A nonstandard method of Gegenbauer orthogonal polynomials for its solution is proposed. It leads to an infinite system of linear algebraic equations of a special structure. The integral representations of the system coefficients are evaluated, and the properties of the system are studied. It is shown that if the exponents coincide, the infinite system admits a simple exact solution that corresponds to the case when the Young moduli are different but the exponents are the same. Formulas for the length of the contact zone, the pressure distribution and the surface normal displacements of the contacting bodies are obtained in the form convenient for computations. Effects of the mismatch in the Young moduli exponents are studied. A comparative analysis of the Hertzian and adhesive contact models clarifies the effects of the surface energy density on the contact pressure, the contact zone size and the profile of the contacting bodies outside the contact area.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45831338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Profiling ponded soil surface in saturated seepage into drain-line sink: Kalashnikov’s method of lateral leaching revisited","authors":"A. Kacimov, Y. Obnosov","doi":"10.1017/s0956792522000171","DOIUrl":"https://doi.org/10.1017/s0956792522000171","url":null,"abstract":"Two boundary value problems are solved for potential steady-state 2D Darcian seepage flows towards a line sink in a homogeneous isotropic soil from a ponded land surface, which is not flat but profiled. The aim of this shaping is ‘uniformisation’ of the velocity and travel time between this surface and a horizontal drain modelled by a line sink. The complex potential domain is a half-strip, which is mapped onto a reference plane. Either the velocity magnitude or a vertical coordinate along the land surface are control variables. Either a complexified velocity or complex physical coordinate is reconstructed by solving mixed boundary-value problems with the help of the Keldysh-Sedov formula via singular integrals, the kernel of which are the control functions. The flow nets, isotachs and breakthrough curves are found by computer algebra routines. A designed soil hump above the drain ameliorates an unwanted ‘preferential flow’ (shortcut) and improves leaching of salinised soil of a cropfield during a pre-cultivation season.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43076741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Resilient tracking consensus over dynamic random graphs: A linear system approach","authors":"Y. Shang","doi":"10.1017/s0956792522000225","DOIUrl":"https://doi.org/10.1017/s0956792522000225","url":null,"abstract":"Cooperative coordination in multi-agent systems has been a topic of interest in networked control theory in recent years. In contrast to cooperative agents, Byzantine agents in a network are capable to manipulate their data arbitrarily and send bad messages to neighbors, causing serious network security issues. This paper is concerned with resilient tracking consensus over a time-varying random directed graph, which consists of cooperative agents, Byzantine agents and a single leader. The objective of resilient tracking consensus is the convergence of cooperative agents to the leader in the presence of those deleterious Byzantine agents. We assume that the number and identity of the Byzantine agents are not known to cooperative agents, and the communication edges in the graph are dynamically randomly evolving. Based upon linear system analysis and a martingale convergence theorem, we design a linear discrete-time protocol to ensure tracking consensus almost surely in a purely distributed manner. Some numerical examples are provided to verify our theoretical results.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48040853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluctuation response patterns of network dynamics – An introduction","authors":"Xiaozhu Zhang, M. Timme","doi":"10.1017/S0956792522000201","DOIUrl":"https://doi.org/10.1017/S0956792522000201","url":null,"abstract":"Networked dynamical systems, i.e., systems of dynamical units coupled via nontrivial interaction topologies, constitute models of broad classes of complex systems, ranging from gene regulatory and metabolic circuits in our cells to pandemics spreading across continents. Most of such systems are driven by irregular and distributed fluctuating input signals from the environment. Yet how networked dynamical systems collectively respond to such fluctuations depends on the location and type of driving signal, the interaction topology and several other factors and remains largely unknown to date. As a key example, modern electric power grids are undergoing a rapid and systematic transformation towards more sustainable systems, signified by high penetrations of renewable energy sources. These in turn introduce significant fluctuations in power input and thereby pose immediate challenges to the stable operation of power grid systems. How power grid systems dynamically respond to fluctuating power feed-in as well as other temporal changes is critical for ensuring a reliable operation of power grids yet not well understood. In this work, we systematically introduce a linear response theory (LRT) for fluctuation-driven networked dynamical systems. The derivations presented not only provide approximate analytical descriptions of the dynamical responses of networks, but more importantly, also allow to extract key qualitative features about spatio-temporally distributed response patterns. Specifically, we provide a general formulation of a LRT for perturbed networked dynamical systems, explicate how dynamic network response patterns arise from the solution of the linearised response dynamics, and emphasise the role of LRT in predicting and comprehending power grid responses on different temporal and spatial scales and to various types of disturbances. Understanding such patterns from a general, mathematical perspective enables to estimate network responses quickly and intuitively, and to develop guiding principles for, e.g., power grid operation, control and design.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"34 1","pages":"429 - 466"},"PeriodicalIF":1.9,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49595347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integration of the modified double layer potential of the vector boundary element method for eddy current problems","authors":"S. Sivak, I. Stupakov, M. Royak, S. Royak","doi":"10.1017/s0956792522000183","DOIUrl":"https://doi.org/10.1017/s0956792522000183","url":null,"abstract":"The boundary element method for the eddy current problem (BEM-ECP) was proposed in a number of papers and is applicable to important tasks such as the problem of inductive heating and transmission of electromagnetic energy. BEM-ECP requires the construction of a system of linear algebraic equations in which the matrix is inherently dense and is constructed out of element matrices. For the process of the element matrix computation, two cases are normally considered: far-field interaction and near-field interaction, because the construction of element matrices requires integration of a singular function. In this article, we suggest a transform that allows computing the matrix components of the near-singular interaction part while implementing only the single and double layer potentials. The previously suggested modified double layer potential (MDLP) can be integrated by means of this transform, which simplifies the program implementation of BEM-ECP significantly. Solving model problems, we analyse the drawbacks of the previously suggested approach. This analysis includes the proof of the MDLP singularity that makes the integration of this potential a rather difficult task without the help of our transform. The previously suggested approach does not work well with surfaces that are not smooth. Our approach does consider such cases, which is its main advantage. We demonstrate this on the model problems with known analytical solutions.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.9,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45209602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}