On a class of nonlocal continuity equations on graphs

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
A. Esposito, F. Patacchini, A. Schlichting
{"title":"On a class of nonlocal continuity equations on graphs","authors":"A. Esposito, F. Patacchini, A. Schlichting","doi":"10.1017/S0956792523000128","DOIUrl":null,"url":null,"abstract":"\n Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0956792523000128","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

Abstract

Motivated by applications in data science, we study partial differential equations on graphs. By a classical fixed-point argument, we show existence and uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider general interpolation functions, which give rise to a variety of different dynamics, for example, the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our analysis reveals structural differences with the more standard Euclidean space, as some analogous properties rely on the interpolation chosen.
图上一类非局部连续性方程
受数据科学应用的启发,我们研究了图上的偏微分方程。利用一个经典的不动点论证,证明了图上一类非局部连续方程解的存在唯一性。我们考虑一般的插值函数,它会产生各种不同的动力学,例如,来自解相关速度场的非局部相互作用动力学。我们的分析揭示了与更标准的欧几里得空间的结构差异,因为一些类似的性质依赖于所选择的插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信