{"title":"Synthesis and Applications of Zinc Oxide Nanorods, Copper-Doped Zinc Oxide Nanorods, Nickel Hydroxide/Zinc Oxide Nanorods, Iron (III) Oxide/Zinc Oxide Nanorods and Zinc Oxide/Graphene Oxide Nanorods for Batch Adsorption, Fixed-Bed Column Study, and Degradation of Cationic Dye (Blue Tur-XGB B-3) from Wastewater","authors":"Humna Munawwar, Ruba Munir, Amna Muneer, Fatima Zaheer, Muhammad Zeeshan Bashir, Murtaza Sayed, Muhammad Zahid, Raziya Nadeem, Nazish Jahan, Saima Noreen","doi":"10.1007/s10563-024-09441-2","DOIUrl":"10.1007/s10563-024-09441-2","url":null,"abstract":"<div><p>Industrial dyes from commercial sector are one of the major contributors to the environmental contamination. This research work mainly focuses on the elimination of synthetic cationic dye (Blue Tur-XGB B-3) through column and batch studies followed adsorption phenomenon. Various methods were employed to prepare the Zinc Oxide nanorods (ZnO) and different metal doped Zinc Oxide nanorods (Cu/ZnO, Ni(OH)<sub>2</sub>/ZnO, α-Fe<sub>2</sub>O<sub>3</sub>/ZnO, GO/ZnO) as adsorbents. The synthesize nanorods were characterized by using FTIR analysis and SEM to confirmed the morphology and functional group of the prepared nano adsorbents. Followed the adsorption procedure the optimum pH for the cationic dye (Blue Tur-XGB B-3) was detected in the basic range which was 9 for ZnO (29.54 mg g<sup>−1</sup>), 10 for Cu/ZnO (37.96 mg g<sup>−1</sup>), 10 for Ni(OH)<sub>2</sub>/ZnO (35.76 mg g<sup>−1</sup>), 9 for α-Fe<sub>2</sub>O<sub>3</sub>/ZnO (31.88 mg g<sup>−1</sup>), 9 for GO/ZnO (33.05 mg g<sup>−1</sup>). The optimum dosage for all the prepared adsorbents were detected 0.05 g/50 mL and showed best adsorption capacity at temperature of 30 °C and 60 min of contact time. The initial concentration of dye was observed at the range of 125–150 mg L<sup>−1</sup> and best adsorption capacity was achieved at 100 mg L<sup>−1</sup> by all adsorbents. Photocatalysis experiment for determination of effect indicated the highest degradation efficiency of 90.49% for Cu doped ZnO NRs, 87.90% for Ni(OH)<sub>2</sub>/ZnO NRs, 79.16% for α-Fe<sub>2</sub>O<sub>3</sub>/ZnO, 70% for ZnO/GONRs and 60.53% for ZnO NRs at 308 K for catalytic degradation of cationic dye (Blue Tur-XGB B-3). Adsorption followed both Langmuir and Freundlich isotherms for all adsorbents. Kinetic adsorption data supported Pseudo 1st and pseudo 2nd order kinetics while thermodynamics analysis indicated spontaneous and exothermic nature. Effect of surfactants, electrolytes, heavy metals and desorption were also evaluated. For column study, optimum bed height (3 cm), optimum flow rate (1.8 mL min<sup>−1</sup>) and optimum inlet dye concentration (70 mg L<sup>−1</sup>) were also observed for maximum adsorption of cationic dye (Blue Tur-XGB B-3). With the help of ZnO, the degradation of Blue Tur-XGB B-3 dye was also investigated. These methods are very cost effective, ecofriendly and easy to manufacture. The recycling results show that the ZnO nanostructures displayed good stability and long-term durability.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"71 - 96"},"PeriodicalIF":2.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of SBA-15 Morphology in the Catalytic Performance of Pt/Ce-SBA-15 Catalyst for NOx Reduction","authors":"Shyam Sunder Rao, Anjali Bharti, Vivek Kumar Patel, Sweta Sharma","doi":"10.1007/s10563-024-09438-x","DOIUrl":"10.1007/s10563-024-09438-x","url":null,"abstract":"<div><p>This research used hydrothermal technique to synthesize three different morphologies of SBA-15 supports, such as rod, hexagonal prism, and spherical. Afterward, it impregnated Pt/Ce metal on the SBA-15 supports via wet-impregnation methods and investigated their NO reduction activity using the H<sub>2</sub>-SCR technique in the temperature range of 50–450℃. The catalysts were characterized by Brunauer-Emmett-Teller (BET), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy, energy dispersive X-ray spectroscopy <b>(</b>SEM-EDS), Transmission electron microscopy (TEM), and Raman spectroscopy. Among the catalysts, Pt/Ce-SBA-15-rod exhibited the best performance with NO conversion of 52.23% and N<sub>2</sub> selectivity of more than 83.25% at 150℃. The Pt/Ce-SBA-15-rod catalysts’ activation energy (21.188 kJ-mol<sup>− 1</sup>) was the lowest of all the catalysts. The catalysts with the highest NO conversion have the highest BET properties, surface oxygen (30.33%), Ce<sup>3+</sup> (40.23%), Pt (0) (70.45%), and oxygen storage capacity.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"26 - 36"},"PeriodicalIF":2.1,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct CO2 Methylation to Value-Added Aromatics Through Tandem Catalysis","authors":"Yong Yang, Yukun Li, Qiong Qin, Dongliang Wang, Huairong Zhou, Dongqiang Zhang","doi":"10.1007/s10563-024-09436-z","DOIUrl":"10.1007/s10563-024-09436-z","url":null,"abstract":"<div><p>The direct CO<sub>2</sub> methylation, coupling CO<sub>2</sub> hydrogenation with benzene ring methylation, provides a promising strategy to synthesize value-added aromatics using green hydrogen and CO<sub>2</sub> as C1 source. The tandem reaction promotes the conversion of CO<sub>2</sub> due to the consumption of in situ formed methoxy or methanol over the tandem catalyst of metal oxide and acid zeolite. This review aims to present the thermodynamics advantage and mechanistic insights of direct CO<sub>2</sub> methylation process. In practice, catalytic conversion and selectivity for typical tandem catalysts are still far below the thermodynamic equilibrium. The detail roles and proximity effects for metal oxide and acid zeolite are covered in order to give directions to the catalyst design and reaction condition optimization, which has been proposed to overcome the kinetic limitation for the direct CO<sub>2</sub> methylation development in future.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"29 1","pages":"1 - 10"},"PeriodicalIF":2.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samika Anand, Sunaja Devi K. R., Santhosh Govindaraju, Sumaiya Tabassum
{"title":"Modified Montmorillonite Catalysed Ultrasonic Assisted one-pot Synthesis of Novel 2,3-dihydroisoxazolo[5,4-d] pyrimidin-4(7H)-ones as Potential Anticancer Agents","authors":"Samika Anand, Sunaja Devi K. R., Santhosh Govindaraju, Sumaiya Tabassum","doi":"10.1007/s10563-024-09435-0","DOIUrl":"10.1007/s10563-024-09435-0","url":null,"abstract":"<div><p>The development of novel compounds with potential anticancer activity is imperative for combating the challenges posed by cancer. In this study, a modified montmorillonite based catalyst is employed for the synthesis of 2,3-dihydroisoxazolo[5,4-<i>d</i>] pyrimidin-4(7 H)-ones, which are promising candidates for anticancer agents. Montmorillonite is modified using mixed metal oxides, typically Al<sub>2</sub>O<sub>3</sub> and CeO<sub>2</sub>, by a facile approach followed by standard spectroscopic and electron microscopic characterizations. It is then employed for the one-pot synthesis of a series of 2,3-dihydroisoxazolo[5,4-<i>d</i>] pyrimidin-4(7 H)-ones. The synthesis protocol, mediated by ultrasound, is simple, efficient, and environment friendly. The mixed metal oxide pillared montmorillonite catalyst exhibits high catalytic activity and selectivity, facilitating the formation of the desired compounds in good to excellent yields. The synthesized compounds are characterized using various spectroscopic techniques such as <sup>1</sup>H NMR, <sup>13</sup>C NMR and mass spectrometry. Furthermore, the anticancer activity of the synthesized compounds is evaluated against a series of cancer cell lines, revealing promising cytotoxic effects. The findings of this study highlight the potential of novel 2,3-dihydroisoxazolo[5,4-<i>d</i>] pyrimidin-4(7 H)-ones as promising anticancer agent, warranting further investigation for their therapeutic potential.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"435 - 451"},"PeriodicalIF":2.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hitanshu Vats, Rehana Shahin, Rajesh Kumar Yadav, Alok Kumar Singh, Atresh Kumar Singh, David G. Churchill, Atul Pratap Singh
{"title":"Oxidized-Sulfur Decorated Two-Dimensional Cobalt(II) Porphyrin Covalent Organic Framework as a Photocatalyst and Proof-on Action Study in Oxidative Cyclization of Thioamide","authors":"Hitanshu Vats, Rehana Shahin, Rajesh Kumar Yadav, Alok Kumar Singh, Atresh Kumar Singh, David G. Churchill, Atul Pratap Singh","doi":"10.1007/s10563-024-09433-2","DOIUrl":"10.1007/s10563-024-09433-2","url":null,"abstract":"<div><p>The 1,2,4-thiadiazoles are an important class of heterocyclic compounds with a wide scope as a pesticide, fungicide, and in drug development including antimicrobial, anti-inflammatory, antituberculosis, anticancer, antihypertensive, and antifungal drugs, etc. Here, an oxidized-sulfur (sulfone) bridged two-dimensional cobalt (II) tetraphenylporphyrin covalent organic framework (Co-P) has been generated through a hydrothermal method on reacting of 5,10,15,20-Tetrakis-(4-bromophenyl)-porphyrin-Co(II) with sulfur powder in catalytic condition. The Co-P shows a favorable optical (1.98 eV) and electrochemical band gap (2.05 eV) for photocatalytic study. In a proof-on action study, the Co-P has been investigated in the oxidative cyclization of thioamide to 1,2,4-thiadiazole (yield = 93–97%) along with excellent regioselectivity, photostability as well as good recyclability (5 times). The excellent photocatalytic activity can be attributed to the presence of infused-sulfone functionality in the Co-P which is well known for its light-harvesting capability as well as the presence of a uniform microporous structure (pore size < 2 nm) with an average pore diameter of 1.80 nm and a surface area of approximately 4.23 m<sup>2</sup>g<sup>− 1</sup>.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"425 - 434"},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts","authors":"Peijia Liu, Sumbal Farid, Min Liu, Junhu Wang","doi":"10.1007/s10563-024-09432-3","DOIUrl":"10.1007/s10563-024-09432-3","url":null,"abstract":"<div><p>Creating cost-effective and efficient electrocatalysts for the sluggish oxygen evolution reaction (OER) is crucial for practical implementation of hydrogen production via water electrolysis, advancing metal-air batteries, and converting CO<sub>2</sub> into value-added chemicals. Transition metal hydroxides, particularly those containing iron (Fe), show promise as OER catalysts, yet the relationship between material properties and catalysis remains unclear. Recent advances in in-situ/<i>operando</i> approaches, notably <sup>57</sup>Fe Mössbauer spectroscopy, enable real-time monitoring of catalysts and reveal structural characteristics of Fe species. This review highlights case studies involving in-situ/<i>operando </i><sup>57</sup>Fe Mössbauer techniques in Fe-involved metal hydroxide OER electrocatalysis, providing insights into Fe’s role, active sites, and catalytic mechanisms. The investigation aims to assess opportunities and challenges linked to the use of in-situ/<i>operando</i> Mössbauer spectroscopy, shedding light on potential advancements in this critical research area.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"361 - 374"},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vaibhav K. Kashte, Nilkanth N. Kapse, Vishal Ashok Pandit, Bhagwan G. Toksha
{"title":"A Review on Graphene Oxide-Based Ferrite Nanocomposites for Catalytic Applications","authors":"Vaibhav K. Kashte, Nilkanth N. Kapse, Vishal Ashok Pandit, Bhagwan G. Toksha","doi":"10.1007/s10563-024-09434-1","DOIUrl":"10.1007/s10563-024-09434-1","url":null,"abstract":"<div><p>This review discusses the synthesis, characterization, catalytic applications, mechanisms, current advances, challenges, and environmental consequences of Graphene oxide-based ferrite nanocomposites. The synthesis described the strategies used to synthesize these nanocomposites. The structural characterization was discussed using XRD, FTIR, and Raman spectroscopy techniques and how it could learn about their chemical composition and bonding. Morphological characterization said the results obtained on the nanostructure of these nanocomposites. The catalytic application phase is concerned with their use in photocatalysis, electrocatalysis, and magnetic catalysis, as well as the synergistic impact and the extra suitable electron switch pathways. The assessment also highlighted emerging developments in synthesis, novel catalytic applications, and capacity applications. The challenges and destiny directions discussed the importance of particular synthesis, management, balance, enhancement, and scalability. Compared to the sustainability, economic viability, and ecological effect, the environmental and monetary issues section underlined the significance of environmentally pleasant manufacturing and massive-scale viability.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"375 - 391"},"PeriodicalIF":2.1,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress on the Catalysts for the Gas-Phase Carbonylation Synthesis of Dimethyl Carbonate from Methyl Nitrite and CO","authors":"Yating Li, Yan Hu, Tian Jiang, Huawei Liu","doi":"10.1007/s10563-024-09431-4","DOIUrl":"10.1007/s10563-024-09431-4","url":null,"abstract":"<div><p>The gas-phase carbonylation synthesis of Dimethyl carbonate (DMC) from carbon monoxide (CO) and methyl nitrite (MN) has the advantages of good availability of raw materials, high purity of DMC product, and no adverse impact on catalyst activity from the byproduct of water. The key to this method is to develop an efficient and stable carbonylation catalyst suitable for the reaction between CO and MN. The reaction mechanism and research progress of the catalysts are reviewed, including chlorine-containing system and chlorine-free system catalysts. The chlorine-containing system is mainly Wacker-type catalyst, and the research focus is how to avoid the loss of Cl<sup>-</sup>. The chlorine-free system catalyst is mainly Pd/NaY zeolite catalyst, the challenge of this system catalyst is to stabilize the structure and chemical state of the active component to achieve high activity and selectivity. In the future, it is equally important to study the deactivation mechanism of the above-mentioned carbonyl catalysts.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"350 - 360"},"PeriodicalIF":2.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Ionic Liquids as Solvent & Catalyst for Heck and Suzuki Reactions: A Comprehensive Review","authors":"Ravi Tomar, Prapti kundra, Juhi Sharma, Sangeeta","doi":"10.1007/s10563-024-09430-5","DOIUrl":"10.1007/s10563-024-09430-5","url":null,"abstract":"<div><p>Ionic liquids (ILs) have overcome solutions to problems associated with increased production with sustainable green approaches over the last three decades. Ionic liquids have appeared as a significant alternative to traditional organic solvents in metal-catalyzed reactions in organic synthesis. This substitution has proven to be instrumental in promoting sustainable development goals by facilitating an eco-friendlier approach to chemical synthesis. Carbon- carbon (C–C) cross-coupling reactions have a decisive role in organic and inorganic chemistry, acting as a flexible tool for the synthesis of complex molecules and materials. These reactions find their applications in various fields, including natural products, pharmaceuticals, and polymers. Among the most frequently used methods for C–C bond formation are the Heck and Suzuki reactions. In this review, we have examined and discussed the recent advancements in the use of ILs as solvents and catalysts in Heck and Suzuki reactions. We have explored various factors such as conversion, yield, catalyst recovery, and time reaction in the context of these reactions over the past few decades. The advantages and accomplishments of using ionic liquids have been evaluated with respect to their potential for enhancing the efficiency of industrial processes.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"311 - 349"},"PeriodicalIF":2.1,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harnessing Hydrogen from the Cheese Whey Effluent in Dairy Industry: Aqueous-Phase Reforming of the Model Compound Lactose Using Pt-Ni/Cu-Al Hydrotalcite Catalyst","authors":"Amol N. Joshi, Prakash D. Vaidya","doi":"10.1007/s10563-024-09428-z","DOIUrl":"10.1007/s10563-024-09428-z","url":null,"abstract":"<div><p>Cheese whey effluent (CWE) is a byproduct from cheese making industry having a high (50,000–100,000 mg/L) chemical oxygen demand (COD) which makes it mandatory to treat this effluent. Unlike the traditional methods known for CWE treatment – fermentation, enzymatic hydrolysis, ultrafiltration, etc., aqueous-phase reforming (APR) is a technology which helps to treat the wastewater by valorising it producing high heating value gases such as hydrogen (H<sub>2</sub>), thus achieving a double benefit. In this work, APR of lactose as a model compound from CWE was carried out using a Pt promoted Ni/Htlc catalyst (where Htlc refers to hydrotalcite) in a stirred batch reactor. Experimental trials were performed where the reaction parameters viz. temperature (488–518 K), catalyst loading (2–6 kg/m<sup>3</sup>), reaction time (1.5–6 h) and lactose concentration (1–5 wt%) were optimized. For optimized parameters, H<sub>2</sub> selectivity of 73% was achieved. The catalyst support Htlc was prepared using Cu and Al, the former being water gas shift (WGS) promoter. Furthermore, the effect of promotion by Pt was investigated with three different loadings (1–5%), where 2.5% Pt outperformed others. The Ni loading was fixed at 10% in all the catalysts. The synthesized catalyst was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis and Fourier transform infrared spectroscopy (FTIR). Finally, based on the experimental data, a rate law was proposed where the rate constant and adsorption constant of lactose were determined using multilinear regression. This work provides a proof-of-concept investigation for valorising CWE via APR using a novel catalyst Pt-Ni/Htlc.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"392 - 404"},"PeriodicalIF":2.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}