Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering最新文献

筛选
英文 中文
Modelling and simulation of suspension system based on topological structure 基于拓扑结构的悬挂系统建模与仿真
Jiangpeng Ren, Huijie Zhang, Huirong Hao, Dong Zhou, Jiawei Wang, Wenchao Zhao
{"title":"Modelling and simulation of suspension system based on topological structure","authors":"Jiangpeng Ren, Huijie Zhang, Huirong Hao, Dong Zhou, Jiawei Wang, Wenchao Zhao","doi":"10.1177/09544070231218364","DOIUrl":"https://doi.org/10.1177/09544070231218364","url":null,"abstract":"The traditional approach of longitudinal cutting in suspension system simplification introduces redundant degrees of freedom, leading to increased system errors. This study focused on a seven degrees of freedom (7DOF) car model and constructed a suspension system topology model based on an across-cutting approach. To emulate road surface excitation, the filtered white noise method was employed. MATLAB/Simulink was used to create simulation models for the across-cutting, traditional longitudinal cutting and the whole car structure. Comparative analysis of these three topologies was conducted in both the time and frequency domains. Simulation results demonstrated that the performance curve of the across-cutting simplified suspension system closely matched that of the whole car model, validating the accuracy of the proposed across-cutting topology. Furthermore, when compared to traditional longitudinal cutting, the across-cutting simplification method reduced the natural frequency error of body pitch vibration by 25% and decreased the root mean square error of body acceleration by 27%. The suspension topology based on across-cutting more closely resembled the actual car structure, offering a theoretical foundation for enhancing overall ride comfort in automobiles.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139594351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on trajectory tracking control of driverless cars based on game theory 基于博弈论的无人驾驶汽车轨迹跟踪控制研究
Gang Li, Tian Tian, Jialin Song, Ning Li, Hongfei Bai
{"title":"Research on trajectory tracking control of driverless cars based on game theory","authors":"Gang Li, Tian Tian, Jialin Song, Ning Li, Hongfei Bai","doi":"10.1177/09544070241227265","DOIUrl":"https://doi.org/10.1177/09544070241227265","url":null,"abstract":"The purpose of this game theory-based trajectory tracking control study of driverless cars is to resolve the conflicting problems of trajectory precision in tracking and drive stability for driverless cars in lane change situations. The general plan for control is made. The lateral control is based on the theory of evolutionary games, and the linear quadratic regulator (LQR) is a method for linear quadratic control with predictive feedforward. When it comes to dynamic systems that vary over time, trajectory tracking precision and drive stability are both sides of the same coin. The payoff matrix is first constructed to determine the utility function, followed by the dynamical replication system to evolve the weights of both sides, and finally the optimal an equilibrium strategy for weight allocation between the two sides of the game to achieve the optimal objective function is determined. The longitudinal dual PID controller has been designed based on proportional, differential, and integral theory. The results reveal that the developed controller outperforms the LQR controller in terms of tracking outcomes, as well as path tracking precision and drive stability.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139601265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a novel multi-fidelity meta modeling approach for robust multi-objective optimization of a natural gas-hydrogen/diesel dual fuel engine 为天然气-氢气-柴油双燃料发动机的稳健多目标优化开发新型多保真元建模方法
Youcef Sehili, Mahfoudh Cerdoun, L. Tarabet, Khaled Loubar, Clément Lacroix
{"title":"Development of a novel multi-fidelity meta modeling approach for robust multi-objective optimization of a natural gas-hydrogen/diesel dual fuel engine","authors":"Youcef Sehili, Mahfoudh Cerdoun, L. Tarabet, Khaled Loubar, Clément Lacroix","doi":"10.1177/09544070231226349","DOIUrl":"https://doi.org/10.1177/09544070231226349","url":null,"abstract":"Multi-fidelity modeling (MFM) is an evolving field that matches low-fidelity models (LFM) and high-fidelity models (HFM) to get better solutions with low computational cost. However, improving the duality between accuracy and computational cost remain challenging, particularly for complex problems such as dual fuel engines. This paper contributes to the MF modeling cost-effectiveness improvement by proposing a new approach to solve large-dimensional multi-objective optimization problems. The first step is to build a meta-model based on the LF model, which will be subjected to a comet-governed analysis to detect potential areas where the uncertainty on the LF model is relatively high. Then, a design of experiment (DOE) will be developed based on the results of this analysis to construct an initial HF model. Finally, an iterative loop will be activated to improve the accuracy of the MF model using a well-weighed combination of the details delivered by the LF model correction via the HF model and the HF meta-model. The developed approach is validated on four different mathematical benchmarks with different difficulties, compared with four different MF modeling strategies. This validation shows that the proposed MF modeling is competitive and can produce solutions as accurate as the HF model while reducing significantly the overall computation time by up to 50%. As an engineering application, the operating conditions in a natural gas-hydrogen/diesel dual fuel engine in terms of compression ratio, pilot injection timing, and EGR are optimized. A reduction of 46%, 68%, and 96% was achieved for HC, NOx, and the knocking index, respectively, while an increase in thermal efficiency of about 5% was obtained.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139603944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on multi-objective adaptive cruise control of intelligent vehicle based on multi-mode switching 基于多模式切换的智能车辆多目标自适应巡航控制研究
Qiping Chen, Lu Gan, Zhiqiang Jiang, Zhao Xu, Xiaobo Zhang
{"title":"Study on multi-objective adaptive cruise control of intelligent vehicle based on multi-mode switching","authors":"Qiping Chen, Lu Gan, Zhiqiang Jiang, Zhao Xu, Xiaobo Zhang","doi":"10.1177/09544070231198278","DOIUrl":"https://doi.org/10.1177/09544070231198278","url":null,"abstract":"Aiming at the problems of slow response, poor comfort and high fuel consumption of the existing adaptive cruise control system under complex operating conditions, a multi-objective adaptive cruise control method of intelligent vehicles based on multi-mode switching is proposed. Firstly, the overall scheme of the adaptive cruise control system is designed by using the hierarchical control structure, and the multi-mode switching strategy is designed by using the fuzzy control theory to realize the division and switching of the working modes during vehicle cruise. Secondly, based on the variable spacing strategy and longitudinal kinematics model, the multi-objective of safety, following performance, fuel economy and comfort is analyzed and carried out, and a quadratic multi-objective optimization function based on multi constraints is obtained. Then, the model predictive control algorithm based on particle swarm optimization (PSO) is used to transform multi-objective function into a standard form with predictive control increment as the optimization variable, and the optimal control rate is solved. Finally, the simulation experiment is carried out by setting three complex working conditions: the preceding vehicle uniform speed change, the preceding vehicle rapid speed change and the adjacent vehicle cut in. The results show that the proposed method can meet the requirements of safety, comfort and fuel economy, and can improve the adaptability and friendliness of intelligent vehicle cruise control system.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139604190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of combined simulation device for vehicle lateral acceleration and yaw 开发车辆横向加速度和偏航组合模拟装置
Fuwei Sun, Kunkun Li, Guoqiang Chen, De-Sheng Guo, Jincan Kang, Chaorui Ren
{"title":"Development of combined simulation device for vehicle lateral acceleration and yaw","authors":"Fuwei Sun, Kunkun Li, Guoqiang Chen, De-Sheng Guo, Jincan Kang, Chaorui Ren","doi":"10.1177/09544070231221177","DOIUrl":"https://doi.org/10.1177/09544070231221177","url":null,"abstract":"When driving, the handling stability and active safety of the vehicle are influenced by the Electronic Stability Program (ESP). The ESP electrical performance test is crucial to the research and development of the whole vehicle. Considering the available space and the safety of the road test, today, the static electrical performance test can only be carried out for the ESP, and the dynamic electrical performance test method is lacked. During driving, the vehicle generated lateral acceleration and yaw angle can activate the ESP, however it is difficult to collect these dynamic signals. Therefore, a combined simulation device for lateral acceleration and yaw is designed in the study. The lateral acceleration is calculated by controlling the motor rotation speed of based on the principle of centrifugal acceleration in circular motion. The yaw angle is obtained by adjusting the motor rotation position. Integrated signal combines two simulation principles to simulate two physical signals at the same time. The practical application in the testing field, it is necessary to reasonably design the combined simulation device structure. The device mainly consists of a power device, a transmission mechanism, an actuator, an angle generator and a signal transmission unit. In the process of study, stress analysis is carried out on key components, and the fatigue strength is checked based on the third strength theory. Then the finite element analysis method is applied to verify the component. Finally, the feasibility of the combined simulation device is verified. In the paper, the simulation device can collect the physical signals of various working conditions, which it transmits the signals to the ESP in real time and the vehicle responds according to the signals. The developed device has extremely important practical value for the vehicle electrical performance test.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139603653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on speed predictive control system of intelligent connected vehicle based on V2X 基于 V2X 的智能网联汽车速度预测控制系统研究
Aijuan Li, Chuanhu Niu, Xueyong Sun, Yuanshuai Jiang, Gang Liu
{"title":"Research on speed predictive control system of intelligent connected vehicle based on V2X","authors":"Aijuan Li, Chuanhu Niu, Xueyong Sun, Yuanshuai Jiang, Gang Liu","doi":"10.1177/09544070241227102","DOIUrl":"https://doi.org/10.1177/09544070241227102","url":null,"abstract":"To enhance the efficiency of urban road traffic and reduce waiting time at traffic lights, this paper proposes a V2X based speed prediction control method for intelligent connected vehicles. Firstly, this paper uses PreScan to build an intelligent network environment model based on V2X communication technology. Then, the traffic signal and target vehicle information transmitted by V2X are analyzed and processed, leading to the design of an intelligent connected vehicle speed prediction control system. Finally, comparative experiments were conducted using HIL between the conventional vehicle speed decision control system and the V2X-based intelligent connected vehicle speed prediction control system under various operating conditions. The experimental results demonstrate that the proposed speed prediction control system can reduce waiting time for traffic lights and enhance road traffic efficiency. Therefore, this paper’s designed speed prediction control system is both effective and feasible, providing a reference for future research on intelligent connected vehicle speed decision control.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139603815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonstationary time-frequency characteristics of vehicle suspension systems based on evolutionary power spectral density 基于进化功率谱密度的车辆悬架系统非稳态时频特性
Buyun Zhang, Chin-An Tan, Zhiqiang Liu, Zhenglin Hu
{"title":"Nonstationary time-frequency characteristics of vehicle suspension systems based on evolutionary power spectral density","authors":"Buyun Zhang, Chin-An Tan, Zhiqiang Liu, Zhenglin Hu","doi":"10.1177/09544070231225503","DOIUrl":"https://doi.org/10.1177/09544070231225503","url":null,"abstract":"Improving the ride comfort for vehicles that travel at varying speeds is a nonstationary problem and has been an increasingly important topic for suspension system research. Accurate identification of frequencies associated with the resonant responses is needed for effective design of active suspension control strategies. However, traditional time-frequency (TF) methods have resolution limitations in either the time domain or the frequency domain. This paper proposes a new methodology to employ the evolutionary power spectral density (EPSD) to describe the responses of vehicles in the time-frequency domain. The key to calculate the responses in nonstationary cases is to derive the nonuniform modulation function which is obtained by the pseudo excitation method. To illustrate the applicability of the proposed method, an example of a seven-degree-of-freedom vehicle model is investigated in which the nonstationary excitations acting on the wheels are computed by the nonuniform modulation function and a precise integration method. Results show that resolutions obtained by the EPSD are more precise than the traditional TF methods with less than 0.2 Hz of bandwidth in both the lower frequency range at the first natural frequency of 1 Hz and in the higher frequency around 10 Hz. Moreover, the changing of the resonant frequency with varying speeds provides the insights, from the perspective of human body’s sensitivity to frequencies of vibration, to improve the ride comfort for vehicles under nonstationary driving conditions.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139607216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Path tracking fault-tolerant control of intelligent distributed drive electric vehicle based on sliding mode observer 基于滑模观测器的智能分布式驱动电动汽车路径跟踪容错控制
Linfeng Zhao, Ruiteng Wang, Ting Fang, Shengshan Liu, Kaiqi Hu, Jinfang Hu, Dingzhi Zhang
{"title":"Path tracking fault-tolerant control of intelligent distributed drive electric vehicle based on sliding mode observer","authors":"Linfeng Zhao, Ruiteng Wang, Ting Fang, Shengshan Liu, Kaiqi Hu, Jinfang Hu, Dingzhi Zhang","doi":"10.1177/09544070231217006","DOIUrl":"https://doi.org/10.1177/09544070231217006","url":null,"abstract":"In this paper, an intelligent distributed drive electric vehicle is used as the research object. The research aims to solve the problem of path-tracking control of intelligent vehicles when the single-side in-wheel motor of the front axle fails. A fault-tolerant control method based on sliding mode observer is proposed. Firstly, an overall vehicle dynamics model considering the failure factor is established, and the failure of the in-wheel motor is monitored by the sliding mode observer. Torque coordination compensation control is activated according to the observed failure. The control system mainly consists of two parts: the torque-coordinated lateral stability controller and the prediction fault tolerant deviation compensation controller. The torque-coordinated lateral stability controller controls the torque of the other wheels to balance the front wheel torque, and the prediction tolerant deviation compensation controller uses Model Predictive Control (MPC) to control the front wheel angle and rear wheel torque of the vehicle to reduce the lateral deviation. Finally, under double-lane change conditions, dynamics simulations and hardware-in-loop experiments are performed to validate the effectiveness of the proposed control method.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steering collision avoidance and lateral stability coordinated control based on vehicle lateral stability region 基于车辆横向稳定区域的转向防撞和横向稳定协调控制
Qianxi Pan, Bing Zhou, Xiaojian Wu, Qingjia Cui, Kangqiang Zheng
{"title":"Steering collision avoidance and lateral stability coordinated control based on vehicle lateral stability region","authors":"Qianxi Pan, Bing Zhou, Xiaojian Wu, Qingjia Cui, Kangqiang Zheng","doi":"10.1177/09544070231222652","DOIUrl":"https://doi.org/10.1177/09544070231222652","url":null,"abstract":"The balance between vehicle lateral stabilization and collision avoidance is critical for steering collision avoidance in emergency situations. On the one hand, emergency steering may cause a vehicle to lose its lateral stability. On the other hand, the overly conservative stability controller may compress the safety margin of vehicle collision avoidance, leading to failure of collision avoidance. Therefore, steering collision avoidance and lateral stability coordinated control (SCALSC) based on the vehicle stability region is proposed. The Lyapunov’s Second Method is used to obtain the lateral stability region instead of the linear two-degree-of-freedom (2-DOF) vehicle states as the stability tracking target to ensure that the vehicle states are in the stability region. The SCALSC includes an active steering controller and a direct-yaw-moment controller (DYC). An active steering controller is used for collision avoidance in emergency conditions, while DYC is used for stability control. An intervention criterion for the DYC system is proposed by using the Hurwitz criterion. Finally, a simulation test was carried out based on MATLAB/Simulink. The simulation results show that the proposed coordinated control method ensures stability, improves the safety margin of collision avoidance, and realizes multiobjective coordinated control of collision avoidance and autonomous vehicle stability control in emergency situations.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139608810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic evaluation method for vehicle audio warning system using MFCC-polynomial hybrid feature 使用 MFCC 多项式混合特征的车辆音频预警系统自动评估方法
Zuoliang Wang, Qimin Xu, Zehua Chen
{"title":"Automatic evaluation method for vehicle audio warning system using MFCC-polynomial hybrid feature","authors":"Zuoliang Wang, Qimin Xu, Zehua Chen","doi":"10.1177/09544070241227089","DOIUrl":"https://doi.org/10.1177/09544070241227089","url":null,"abstract":"In the evaluation of vehicle audio warning system, there is no automatic method. Besides, due to the noise interference of in-vehicle environmental, the quantity limitation and only positive training samples, the accuracy of traditional template matching or identification methods for audio is low. To solve the above problems, an efficient, accurate, and automatic evaluation method is proposed for vehicle audio warning system. Firstly, logmmse-spectrum subtraction method is used to filter the dynamic noise and static noise of the evaluation audio acquired in the in-vehicle environment. Secondly, the end point detection based on short-time energy is used to obtain the effective audio segment after noise reduction, and the start time of the audio warning segment can be accurately obtained. Then, the Mel Frequency Cepstrum Coefficient (MFCC) feature and the polynomial fitting feature of each audio segment are extracted. The hybrid features are treated as the input of the Hidden Markov Model-Gaussian Mixture Model (GMM-HMM) based audio matching model. Finally, according to frame shift set by endpoint detection and the audio sampling frequency, the emitted time of matched audio warning can be calculated to support the evaluation of vehicle audio warning system. The experimental result shows that, with dynamic-static noise reduction and MFCC-polynomial hybrid feature, the average matching accuracy of the proposed method reaches 99.6% in the case of only five training samples.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139606041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信