{"title":"Steering collision avoidance and lateral stability coordinated control based on vehicle lateral stability region","authors":"Qianxi Pan, Bing Zhou, Xiaojian Wu, Qingjia Cui, Kangqiang Zheng","doi":"10.1177/09544070231222652","DOIUrl":null,"url":null,"abstract":"The balance between vehicle lateral stabilization and collision avoidance is critical for steering collision avoidance in emergency situations. On the one hand, emergency steering may cause a vehicle to lose its lateral stability. On the other hand, the overly conservative stability controller may compress the safety margin of vehicle collision avoidance, leading to failure of collision avoidance. Therefore, steering collision avoidance and lateral stability coordinated control (SCALSC) based on the vehicle stability region is proposed. The Lyapunov’s Second Method is used to obtain the lateral stability region instead of the linear two-degree-of-freedom (2-DOF) vehicle states as the stability tracking target to ensure that the vehicle states are in the stability region. The SCALSC includes an active steering controller and a direct-yaw-moment controller (DYC). An active steering controller is used for collision avoidance in emergency conditions, while DYC is used for stability control. An intervention criterion for the DYC system is proposed by using the Hurwitz criterion. Finally, a simulation test was carried out based on MATLAB/Simulink. The simulation results show that the proposed coordinated control method ensures stability, improves the safety margin of collision avoidance, and realizes multiobjective coordinated control of collision avoidance and autonomous vehicle stability control in emergency situations.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070231222652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The balance between vehicle lateral stabilization and collision avoidance is critical for steering collision avoidance in emergency situations. On the one hand, emergency steering may cause a vehicle to lose its lateral stability. On the other hand, the overly conservative stability controller may compress the safety margin of vehicle collision avoidance, leading to failure of collision avoidance. Therefore, steering collision avoidance and lateral stability coordinated control (SCALSC) based on the vehicle stability region is proposed. The Lyapunov’s Second Method is used to obtain the lateral stability region instead of the linear two-degree-of-freedom (2-DOF) vehicle states as the stability tracking target to ensure that the vehicle states are in the stability region. The SCALSC includes an active steering controller and a direct-yaw-moment controller (DYC). An active steering controller is used for collision avoidance in emergency conditions, while DYC is used for stability control. An intervention criterion for the DYC system is proposed by using the Hurwitz criterion. Finally, a simulation test was carried out based on MATLAB/Simulink. The simulation results show that the proposed coordinated control method ensures stability, improves the safety margin of collision avoidance, and realizes multiobjective coordinated control of collision avoidance and autonomous vehicle stability control in emergency situations.