Advanced Engineering Informatics最新文献

筛选
英文 中文
SFDA-T: A novel source-free domain adaptation method with strong generalization ability for fault diagnosis SFDA-T:用于故障诊断的具有强大泛化能力的新型无源域适应方法
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102903
Jie Wang , Haidong Shao , Yiming Xiao , Bin Liu
{"title":"SFDA-T: A novel source-free domain adaptation method with strong generalization ability for fault diagnosis","authors":"Jie Wang ,&nbsp;Haidong Shao ,&nbsp;Yiming Xiao ,&nbsp;Bin Liu","doi":"10.1016/j.aei.2024.102903","DOIUrl":"10.1016/j.aei.2024.102903","url":null,"abstract":"<div><div>Currently, source free domain adaptation (SFDA) methods are employed to address the issue of inaccessible source domain data (SDD) in transfer learning. However, existing SFDA methods often suffer from overfitting to specific domains, leading to poor generalization ability in the target domain. To address these challenges, this paper proposes a novel SFDA method named SFDA-T for fault diagnosis. Specifically, a Transformer-CNN-based feature extractor is constructed, to mine the transferable feature knowledge of faults in the SDD. The approach reduces the overfitting of the model to domain-specific information and improves model’s generalization ability. In addition, the feature attention loss is designed to calculate attention weights of the sample features to increase the model’s attention to the crucial feature regions in the target domain. A source similarity guided exponential loss is developed to guide target samples based on the decision boundaries of the source domain, facilitating cluster alignment of target sample categories and expanding distances between different categories. Furthermore, a self-training pseudo-labeling constraint is employed to reduce the effect of incorrect label matching and further constrain the model. The results of the experiments on gearboxes and bearings indicate that the proposed method achieves high fault diagnosis accuracy while effectively decoupling from SDD.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102903"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
User requirement modeling and evolutionary analysis based on review data: Supporting the design upgrade of product attributes 根据审查数据进行用户需求建模和演变分析:支持产品属性的设计升级
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102861
Yuanrong Zhang , Wei Guo , Zhixing Chang , Jian Ma , Zhonglin Fu , Lei Wang , Hongyu Shao
{"title":"User requirement modeling and evolutionary analysis based on review data: Supporting the design upgrade of product attributes","authors":"Yuanrong Zhang ,&nbsp;Wei Guo ,&nbsp;Zhixing Chang ,&nbsp;Jian Ma ,&nbsp;Zhonglin Fu ,&nbsp;Lei Wang ,&nbsp;Hongyu Shao","doi":"10.1016/j.aei.2024.102861","DOIUrl":"10.1016/j.aei.2024.102861","url":null,"abstract":"<div><div>In recent years, an increasing number of studies have focused on user requirement modeling based on online review texts. However, traditional methods often overlook the integration of user requirement models with product design frameworks, failing to effectively transform dynamically changing user requirements into a basis for product attribute upgrades. This paper proposes a user requirement modeling and evolutionary analysis method based on review data, supporting the design upgrade of product attributes. This approach differs from traditional user requirement modeling and analysis methods in two main aspects: (1) integrating the designer’s product design framework into the classification and modeling of user requirements; (2) analyzing the dynamic changes in user requirements during product upgrades and formulating new product attribute upgrade strategies. Initially, the study extracts three categories of product attributes that designers are concerned about from the review data: function (F), structure (S), and parameters (P), and establishes a correlation model between these product attributes. Subsequently, using natural language processing technology to calculate sentiment scores for product attributes and employing the Multi-Layer Perceptron (MLP) model to analyze the impact of product attribute sentiment on user satisfaction, the study constructs the FSP-Kano model, achieving classification and modeling of user requirements for these three categories of product attributes. Finally, based on the dynamic changes in user requirements within the FSP-Kano model, strategies for upgrading next-generation products are formulated. Additionally, the study illustrates the proposed method with the example of BYD’s “Qin” series of new energy vehicles. Our research demonstrates that the proposed method can accurately and comprehensively extract user requirements and develop successful product attribute improvement strategies for the next generation of products.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102861"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cognitive load assessment of active back-support exoskeletons in construction: A case study on construction framing 建筑中主动式背部支撑外骨骼的认知负荷评估:建筑框架案例研究
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102905
Abiola Akanmu , Akinwale Okunola , Houtan Jebelli , Ashtarout Ammar , Adedeji Afolabi
{"title":"Cognitive load assessment of active back-support exoskeletons in construction: A case study on construction framing","authors":"Abiola Akanmu ,&nbsp;Akinwale Okunola ,&nbsp;Houtan Jebelli ,&nbsp;Ashtarout Ammar ,&nbsp;Adedeji Afolabi","doi":"10.1016/j.aei.2024.102905","DOIUrl":"10.1016/j.aei.2024.102905","url":null,"abstract":"<div><div>Active back-support exoskeleton has emerged as a potential solution for mitigating work-related musculoskeletal disorders within the construction industry. Nevertheless, research has unveiled unintended consequences associated with its usage, most notably increased cognitive load. Elevated cognitive load has been shown to deplete working memory, potentially impeding task performance and situational awareness. Despite the susceptibility of exoskeleton users to increased cognitive load, there has been limited empirical evaluation of this risk while performing construction tasks. This study evaluates the cognitive load associated with using an active back-support exoskeleton while performing construction tasks. An experiment was conducted to capture brain activity using an Electroencephalogram, both with and without the use of an active back-support exoskeleton. A construction framing task involving six subtasks was considered as a case study. The participants’ cognitive load was assessed for the tested conditions and subtasks through the alpha band of the Electroencephalogram signals. The study identified the most sensitive Electroencephalogram channels for evaluating cognitive load when using exoskeletons. Statistical tests, including a one-way repeated measure ANOVA, paired <em>t</em>-test, and Spearman Rank were conducted to make inferences about the collected data. The results revealed that using an active back-support exoskeleton while performing the carpentry framing task increased the cognitive load of the participants, as indicated by four out of five significant Electroencephalogram channels. Selected channels in the frontal and occipital lobes emerged as the most influential channels in assessing cognitive load. Additionally, the study explores the relationships among Electroencephalogram channels, revealing strong correlations between selected channels in the frontal lobe and between channels in the occipital and frontal lobes. These findings enhance understanding of how specific brain regions respond to the use of active back support exoskeletons during construction tasks. By identifying which brain regions are most affected, this study contributes to optimizing exoskeleton designs to better manage cognitive load, potentially improving both the ergonomic effectiveness and safety of these devices in construction environments.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102905"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-vehicle vision-based automatic identification of bulldozer operation cycles with temporal action detection 基于车载视觉的推土机操作周期自动识别与时间动作检测
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102899
Cheng Zhou , Yuxiang Wang , Ke You , Rubin Wang
{"title":"In-vehicle vision-based automatic identification of bulldozer operation cycles with temporal action detection","authors":"Cheng Zhou ,&nbsp;Yuxiang Wang ,&nbsp;Ke You ,&nbsp;Rubin Wang","doi":"10.1016/j.aei.2024.102899","DOIUrl":"10.1016/j.aei.2024.102899","url":null,"abstract":"<div><div>Automated monitoring of bulldozer operation cycles is crucial for efficient productivity assessment and precise construction management. Harsh earthwork environments and complex, variable operation processes present challenges for identifying these cycles. To address this issue, we developed a multiscale temporal feature fusion and dual attention mechanism-based temporal action detection model (FDA-AFSD) for the automatic identification of bulldozer operation cycles from in to vehicle vision. This model enhances long-term sequence modeling, key temporal information learning, and precise action boundary identification through its multiscale temporal feature fusion structure, dual attention mechanism module, and scalable granularity perception (SGP) layer. In tests for earth levelling and mine edge dumping operations, the average detection accuracy (mAP) for bulldozer operation cycles reached 90.9%. Furthermore, under various adverse weather conditions and diverse construction processes, the model maintained stable and excellent detection capabilities, demonstrating its feasibility and practical application value.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102899"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A similarity-aware ensemble method for displacement prediction of concrete dams based on temporal division and fully Bayesian learning 基于时间划分和完全贝叶斯学习的混凝土大坝位移预测相似性感知集合方法
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102921
Ruizhe Liu , Qiubing Ren , Mingchao Li , Xiaocui Ji , Ting Liu , Hao Liu
{"title":"A similarity-aware ensemble method for displacement prediction of concrete dams based on temporal division and fully Bayesian learning","authors":"Ruizhe Liu ,&nbsp;Qiubing Ren ,&nbsp;Mingchao Li ,&nbsp;Xiaocui Ji ,&nbsp;Ting Liu ,&nbsp;Hao Liu","doi":"10.1016/j.aei.2024.102921","DOIUrl":"10.1016/j.aei.2024.102921","url":null,"abstract":"<div><div>Precisely predicting concrete dam displacements is crucial for assessing their structural behavior during operation. Many studies have testified that ensemble methods are more accurate and applicable in practice than individual predictive models. Nevertheless, the common way handling massive monitoring data is still conventional, that is, training and testing them as a whole, neglecting the internal law and pattern difference within data, which probably limits advancements in predictive effect. To this end, the patterns of monitoring data are identified and classified before model establishment, and a similarity-aware ensemble method (SAEM) using temporal division and fully Bayesian learning is presented for dam displacement prediction. Specifically, the unsupervised fuzzy C-means approach and sparrow search algorithm are fused for similar pattern clustering of environmental factors, thus achieving temporal division in displacement responses. Fully considering the adaptability of model structure and parameters to various data patterns, a non-parametric fully Bayesian Gaussian process regression (FBGPR) model is proposed by augmenting the standard GPR with Markov chain Monte Carlo simulation and Bayesian evidence evaluation theory. Different data clusters are then fed into FBGPR in chronological order, and the final results are derived through a grouping ensemble scheme. Multiple sets of monitoring data collected from a real-world dam project are employed for method verification. The results show that our proposed SAEM has better prediction accuracy compared to homogeneous clustering-based ensemble methods and commonly used individual models. The superior performance in two additional cases also verifies the adaptability and generalization ability of our method, which provides a new modeling tool for structural health monitoring of concrete dams.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102921"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable and interpretable bearing fault classification and diagnosis under limited data 在数据有限的情况下,对轴承故障进行可解释和可解读的分类和诊断
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102909
L. Magadán , C. Ruiz-Cárcel , J.C. Granda , F.J. Suárez , A. Starr
{"title":"Explainable and interpretable bearing fault classification and diagnosis under limited data","authors":"L. Magadán ,&nbsp;C. Ruiz-Cárcel ,&nbsp;J.C. Granda ,&nbsp;F.J. Suárez ,&nbsp;A. Starr","doi":"10.1016/j.aei.2024.102909","DOIUrl":"10.1016/j.aei.2024.102909","url":null,"abstract":"<div><div>Rotating machinery plays an essential role in various industrial processes such as manufacturing, power generation, and transportation. These machines, which include turbines, pumps, motors, compressors, and many others, are the heartbeats of numerous industries. The seamless operation of these machines is critical for the efficiency and productivity of these sectors. However, over time, these machines degrade and can suffer faults. One of the most critical components are bearings, which can suffer different types of faults. This paper presents a novel approach for bearing fault classification and diagnosis under limited data. A Monotonic Smoothed Stacked AutoEncoder (MS2AE) is used to infer a smoothed monotonic health index from raw bearing acceleration data. The MS2AE is trained using only healthy data, so this approach can also be used with recently comisioned equipment that has not failed yet. Then, using the evolution of the health index, a first faulty point is computed, so two stages are identified in the lifespan of the rotating machinery: healthy and faulty. Correlation matrices are computed to show the relationship of the health index with time-domain and frequency-domain features in order to provide explainability and validate the health index construction process. When the health index is classified as faulty, Dynamic Time Warping is applied between healthy samples and faulty samples to extract differences. Finally, based on a 1/3-binary tree 3 level kurtogram, these differences are filtered using a bandpass filter and converted to the frequency domain, where characteristic harmonics are used to identify the type of bearing fault. The explainability provided in the health index construction process makes the system useful in certain industries where black-box AI models cannot be trusted due to strict regulations. The classification and diagnosis system achieves robustness in fault classification under different working conditions by utilizing multiple bearing fault datsets. Its ability to be trained using only healthy data and the interpretability offered, makes it suitable for recently installed rotating machinery in real industrial facilities, without requiring qualified staff.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102909"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping 通过多代理强化学习与奖励塑造实现动态灵活的作业车间调度
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102872
Lixiang Zhang , Yan Yan , Chen Yang , Yaoguang Hu
{"title":"Dynamic flexible job-shop scheduling by multi-agent reinforcement learning with reward-shaping","authors":"Lixiang Zhang ,&nbsp;Yan Yan ,&nbsp;Chen Yang ,&nbsp;Yaoguang Hu","doi":"10.1016/j.aei.2024.102872","DOIUrl":"10.1016/j.aei.2024.102872","url":null,"abstract":"<div><div>Achieving mass personalization presents significant challenges in performance and adaptability when solving dynamic flexible job-shop scheduling problems (DFJSP). Previous studies have struggled to achieve high performance in variable contexts. To tackle this challenge, this paper introduces a novel scheduling strategy founded on heterogeneous multi-agent reinforcement learning. This strategy facilitates centralized optimization and decentralized decision-making through collaboration among job and machine agents while employing historical experiences to support data-driven learning. The DFJSP with transportation time is initially formulated as heterogeneous multi-agent partial observation Markov Decision Processes. This formulation outlines the interactions between decision-making agents and the environment, incorporating a reward-shaping mechanism aimed at organizing job and machine agents to minimize the weighted tardiness of dynamic jobs. Then, we develop a dueling double deep Q-network algorithm incorporating the reward-shaping mechanism to ascertain the optimal strategies for machine allocation and job sequencing in DFJSP. This approach addresses the sparse reward issue and accelerates the learning process. Finally, the efficiency of the proposed method is verified and validated through numerical experiments, which demonstrate its superiority in reducing the weighted tardiness of dynamic jobs when compared to state-of-the-art baselines. The proposed method exhibits remarkable adaptability in encountering new scenarios, underscoring the benefits of adopting a heterogeneous multi-agent reinforcement learning-based scheduling approach in navigating dynamic and flexible challenges.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102872"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical review of process monitoring for laser-based additive manufacturing 激光快速成型制造过程监控评述
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102932
Ankit Das , Debraj Ghosh , Shing-Fung Lau , Pavitra Srivastava , Aniruddha Ghosh , Chien-Fang Ding
{"title":"A critical review of process monitoring for laser-based additive manufacturing","authors":"Ankit Das ,&nbsp;Debraj Ghosh ,&nbsp;Shing-Fung Lau ,&nbsp;Pavitra Srivastava ,&nbsp;Aniruddha Ghosh ,&nbsp;Chien-Fang Ding","doi":"10.1016/j.aei.2024.102932","DOIUrl":"10.1016/j.aei.2024.102932","url":null,"abstract":"<div><div>Additive manufacturing (AM) is a versatile, primary manufacturing method widely employed in aerospace, medical, and automotive industries. This environmentally friendly process involves complex phenomena, necessitating comprehensive monitoring for process insights. This review examines AM process monitoring systems, including optical cameras, thermography, and radiography. These technologies generate substantial data, enabling soft computing and machine learning applications for efficiency enhancement and process optimization. Focusing on laser-based AM, the review discusses existing monitoring methods, their limitations, and potential solutions. It explores intelligent AM systems and in-situ X-ray synchrotron techniques, highlighting the transformative potential of efficient process monitoring. The review briefly introduces AM classification, outlines current monitoring methods and their constraints, and proposes smart laser-based AM systems with an overview of applicable machine learning techniques. Finally, it presents plausible solutions to identified limitations and discusses future prospects, emphasizing the revolutionary impact of effective process monitoring on laser AM processes.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102932"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-free evaluation for performance of fault diagnosis model on unknown distribution dataset 在未知分布数据集上对故障诊断模型的性能进行无标签评估
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102912
Zhenyu Liu , Haowen Zheng , Hui Liu , Weiqiang Jia , Jianrong Tan
{"title":"Label-free evaluation for performance of fault diagnosis model on unknown distribution dataset","authors":"Zhenyu Liu ,&nbsp;Haowen Zheng ,&nbsp;Hui Liu ,&nbsp;Weiqiang Jia ,&nbsp;Jianrong Tan","doi":"10.1016/j.aei.2024.102912","DOIUrl":"10.1016/j.aei.2024.102912","url":null,"abstract":"<div><div>Real-time data may undergo distribution drift due to changes in operating conditions and other factors, which can affect the classification accuracy of online fault diagnosis models and potentially lead to serious consequences. Therefore, understanding the classification accuracy of the model on real-time data holds substantial significance. However, the absence of labels in real-time data presents a challenge for evaluating classification accuracy. Furthermore, the real-time nature of fault diagnosis necessitates a swift and straightforward evaluation method. For the above reasons, this paper proposes a method for evaluating the classification accuracy of a model on real-time data, which is done in the absence of labels for the real-time data. The proposed label-free evaluation method transforms the model’s output into a scalar that measures the degree of matching between the classification probabilities, termed the average free energy. It then establishes a mapping between the average free energy and the classification accuracy using an auxiliary dataset. Finally, it predicts the model’s classification accuracy on the real-time data through this mapping and the average free energy of the real-time data. The proposed method is experimentally evaluated on public datasets, demonstrating its superiority in various aspects.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102912"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fractional-derivative kernel learning strategy for predicting residual life of rolling bearings 预测滚动轴承残余寿命的分数导数核学习策略
IF 8 1区 工程技术
Advanced Engineering Informatics Pub Date : 2024-10-01 DOI: 10.1016/j.aei.2024.102914
Meiyu Cui , Ranran Gao , Libiao Peng , Xifeng Li , Dongjie Bi , Yongle Xie
{"title":"A fractional-derivative kernel learning strategy for predicting residual life of rolling bearings","authors":"Meiyu Cui ,&nbsp;Ranran Gao ,&nbsp;Libiao Peng ,&nbsp;Xifeng Li ,&nbsp;Dongjie Bi ,&nbsp;Yongle Xie","doi":"10.1016/j.aei.2024.102914","DOIUrl":"10.1016/j.aei.2024.102914","url":null,"abstract":"<div><div>In the field of mechanical equipment maintenance, accurately estimating the remaining useful life (RUL) of rolling bearings is crucial for ensuring reliable equipment operation. However, prevalent deep learning methods face challenges such as limited sample sizes, and “black-box” mechanisms. To enhance the accuracy and interpretability of rolling bearing RUL prediction, a novel fractional-derivative kernel mean <span><math><mi>p</mi></math></span>-power error filtering algorithm (FrKMPE) is introduced. A comprehensive analysis of convergence for this method in terms of both mean error and mean square error criteria is provided. By combining the memory properties of fractional-derivative with the adaptability of kernel method, it can effectively capture features of non-stationary signals and sensitively monitor changes of rolling bearing health states (HSs). The effectiveness of the FrKMPE is validated through its application to the prediction of RUL using the IEEE PHM 2012 challenge dataset and the XJTU-SY dataset. Experimental results demonstrate that the proposed FrKMPE outperforms existing kernel adaptive filtering and deep learning methods in rolling bearing RUL prediction. The proposed method has advantages in dealing with complex nonlinear data and improving prediction accuracy, and provides a new perspective and solution for rolling bearing RUL prediction.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102914"},"PeriodicalIF":8.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142659194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信