FMANet:用于模拟裂纹污染复杂环境的多类型预处理融合曼巴注意力模型

IF 9.9 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Junwen Zheng , Houxin Lv , Hangtian Song , Jiang Li , Rongrong Bai , Lingkun Chen , Qizhi Chen , Lizhong Jiang
{"title":"FMANet:用于模拟裂纹污染复杂环境的多类型预处理融合曼巴注意力模型","authors":"Junwen Zheng ,&nbsp;Houxin Lv ,&nbsp;Hangtian Song ,&nbsp;Jiang Li ,&nbsp;Rongrong Bai ,&nbsp;Lingkun Chen ,&nbsp;Qizhi Chen ,&nbsp;Lizhong Jiang","doi":"10.1016/j.aei.2025.103808","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes FMANet (Fusion Mamba Attention Network), a crack segmentation network that integrates Mamba modules and hybrid attention mechanisms, and combines a set of data preprocessing methods that integrate multiple simulated real environment interferences. FMANet enhances segmentation accuracy and anti-interference capabilities with a visual state spatial model and parallel hybrid attention module. The data preparation creates a Chameleon Crack Dataset (CCD) of various cracks using color transformation, Berlin noise, and Gaussian noise/blurring. The experimental findings demonstrate that FMANet obtains 87.38% F1-score and 79.68% mIoU on the CCD test set, which surpasses the other comparison models. The ablation experiment shows the Mamba module’s contribution to the model’s 36.89% improvement in PI value. This work offers an effective way to gather fracture data and automatically segment fractures in complicated settings.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"69 ","pages":"Article 103808"},"PeriodicalIF":9.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FMANet: Fused mamba attention model with multi-type preprocessing for simulated crack-contaminated complex environments\",\"authors\":\"Junwen Zheng ,&nbsp;Houxin Lv ,&nbsp;Hangtian Song ,&nbsp;Jiang Li ,&nbsp;Rongrong Bai ,&nbsp;Lingkun Chen ,&nbsp;Qizhi Chen ,&nbsp;Lizhong Jiang\",\"doi\":\"10.1016/j.aei.2025.103808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes FMANet (Fusion Mamba Attention Network), a crack segmentation network that integrates Mamba modules and hybrid attention mechanisms, and combines a set of data preprocessing methods that integrate multiple simulated real environment interferences. FMANet enhances segmentation accuracy and anti-interference capabilities with a visual state spatial model and parallel hybrid attention module. The data preparation creates a Chameleon Crack Dataset (CCD) of various cracks using color transformation, Berlin noise, and Gaussian noise/blurring. The experimental findings demonstrate that FMANet obtains 87.38% F1-score and 79.68% mIoU on the CCD test set, which surpasses the other comparison models. The ablation experiment shows the Mamba module’s contribution to the model’s 36.89% improvement in PI value. This work offers an effective way to gather fracture data and automatically segment fractures in complicated settings.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"69 \",\"pages\":\"Article 103808\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034625007013\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034625007013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了融合曼巴模块和混合注意机制的裂缝分割网络FMANet (Fusion Mamba Attention Network),并结合了一套集成多种模拟真实环境干扰的数据预处理方法。FMANet通过视觉状态空间模型和并行混合注意模块提高了分割精度和抗干扰能力。数据准备使用颜色变换、柏林噪声和高斯噪声/模糊创建各种裂纹的变色龙裂纹数据集(CCD)。实验结果表明,FMANet在CCD测试集上获得了87.38%的f1得分和79.68%的mIoU,优于其他比较模型。烧蚀实验表明,Mamba模块对模型的PI值提高了36.89%。这项工作为收集裂缝数据和在复杂环境中自动分割裂缝提供了有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FMANet: Fused mamba attention model with multi-type preprocessing for simulated crack-contaminated complex environments
This paper proposes FMANet (Fusion Mamba Attention Network), a crack segmentation network that integrates Mamba modules and hybrid attention mechanisms, and combines a set of data preprocessing methods that integrate multiple simulated real environment interferences. FMANet enhances segmentation accuracy and anti-interference capabilities with a visual state spatial model and parallel hybrid attention module. The data preparation creates a Chameleon Crack Dataset (CCD) of various cracks using color transformation, Berlin noise, and Gaussian noise/blurring. The experimental findings demonstrate that FMANet obtains 87.38% F1-score and 79.68% mIoU on the CCD test set, which surpasses the other comparison models. The ablation experiment shows the Mamba module’s contribution to the model’s 36.89% improvement in PI value. This work offers an effective way to gather fracture data and automatically segment fractures in complicated settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信