ACM Transactions on Information Systems最新文献

筛选
英文 中文
Using Neural and Graph Neural Recommender systems to Overcome Choice Overload: Evidence from a Music Education Platform 使用神经和图神经推荐系统克服选择过载:来自音乐教育平台的证据
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-20 DOI: 10.1145/3637873
Hédi Razgallah, Michalis Vlachos, Ahmad Ajalloeian, Ninghao Liu, Johannes Schneider, Alexis Steinmann
{"title":"Using Neural and Graph Neural Recommender systems to Overcome Choice Overload: Evidence from a Music Education Platform","authors":"Hédi Razgallah, Michalis Vlachos, Ahmad Ajalloeian, Ninghao Liu, Johannes Schneider, Alexis Steinmann","doi":"10.1145/3637873","DOIUrl":"https://doi.org/10.1145/3637873","url":null,"abstract":"<p>The application of recommendation technologies has been crucial in the promotion of physical and digital content across numerous global platforms such as Amazon, Apple, and Netflix. Our study aims to investigate the advantages of employing recommendation technologies on educational platforms, with a particular focus on an educational platform for learning and practicing music. </p><p>Our research is based on data from Tomplay, a music platform that offers sheet music with professional audio recordings, enabling users to discover and practice music content at varying levels of difficulty. Through our analysis, we emphasize the distinct interaction patterns on educational platforms like Tomplay, which we compare with other commonly used recommendation datasets. We find that interactions are comparatively sparse on educational platforms, with users often focusing on specific content as they learn, rather than interacting with a broader range of material. Therefore, our primary goal is to address the issue of data sparsity. We achieve this through entity resolution principles and propose a neural network (NN) based recommendation model. Further, we improve this model by utilizing graph neural networks (GNNs), which provide superior predictive accuracy compared to NNs. Notably, our study demonstrates that GNNs are highly effective even for users with little or no historical preferences (cold-start problem). </p><p>Our cold-start experiments also provide valuable insights into an independent issue, namely the number of historical interactions needed by a recommendation model to gain a comprehensive understanding of a user. Our findings demonstrate that a platform acquires a solid knowledge of a user’s general preferences and characteristics with 50 past interactions. Overall, our study makes significant contributions to information systems research on business analytics and prescriptive analytics. Moreover, our framework and evaluation results offer implications for various stakeholders, including online educational institutions, education policymakers, and learning platform users.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138817699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Impact of Showing Evidence from Peers in Crowdsourced Truthfulness Assessments 论在众包真实性评估中展示同行证据的影响
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-19 DOI: 10.1145/3637872
Jiechen Xu, Lei Han, Shazia Sadiq, Gianluca Demartini
{"title":"On the Impact of Showing Evidence from Peers in Crowdsourced Truthfulness Assessments","authors":"Jiechen Xu, Lei Han, Shazia Sadiq, Gianluca Demartini","doi":"10.1145/3637872","DOIUrl":"https://doi.org/10.1145/3637872","url":null,"abstract":"<p>Misinformation has been rapidly spreading online. The common approach to deal with it is deploying expert fact-checkers that follow forensic processes to identify the veracity of statements. Unfortunately, such an approach does not scale well. To deal with this, crowdsourcing has been looked at as an opportunity to complement the work done by trained journalists. In this paper, we look at the effect of presenting the crowd with evidence from others while judging the veracity of statements. We implement various variants of the judgment task design to understand if and how the presented evidence may or may not affect the way crowd workers judge truthfulness and their performance. Our results show that, in certain cases, the presented evidence and the way in which it is presented may mislead crowd workers who would otherwise be more accurate if judging independently from others. Those who make appropriate use of the provided evidence, however, can benefit from it and generate better judgments.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SMLP4Rec: An Efficient all-MLP Architecture for Sequential Recommendations SMLP4Rec:顺序推荐的高效全 MLP 架构
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-18 DOI: 10.1145/3637871
Jingtong Gao, Xiangyu Zhao, Muyang Li, Minghao Zhao, Runze Wu, Ruocheng Guo, Yiding Liu, Dawei Yin
{"title":"SMLP4Rec: An Efficient all-MLP Architecture for Sequential Recommendations","authors":"Jingtong Gao, Xiangyu Zhao, Muyang Li, Minghao Zhao, Runze Wu, Ruocheng Guo, Yiding Liu, Dawei Yin","doi":"10.1145/3637871","DOIUrl":"https://doi.org/10.1145/3637871","url":null,"abstract":"<p>Self-attention models have achieved the state-of-the-art performance in sequential recommender systems by capturing the sequential dependencies among user-item interactions. However, they rely on adding positional embeddings to the item sequence to retain the sequential information, which may break the semantics of item embeddings due to the heterogeneity between these two types of embeddings. In addition, most existing works assume that such dependencies exist solely in the item embeddings, but neglect their existence among the item features. In our previous study, we proposed a novel sequential recommendation model, i.e., MLP4Rec, based on the recent advances of MLP-Mixer architectures, which is naturally sensitive to the order of items in a sequence because matrix elements related to different positions of a sequence will be given different weights in training. We developed a tri-directional fusion scheme to coherently capture sequential, cross-channel, and cross-feature correlations with linear computational complexity as well as much fewer model parameters than existing self-attention methods. However, the cascading mixer structure, the large number of normalization layers between different mixer layers, and the noise generated by these operations limit the efficiency of information extraction and the effectiveness of MLP4Rec. In this extended version, we propose a novel framework – SMLP4Rec for sequential recommendation to address the aforementioned issues. The new framework changes the flawed cascading structure to a parallel mode, and integrates normalization layers to minimize their impact on the model’s efficiency while maximizing their effectiveness. As a result, the training speed and prediction accuracy of SMLP4Rec are vastly improved in comparison to MLP4Rec. Extensive experimental results demonstrate that the proposed method is significantly superior to the state-of-the-art approaches. The implementation code is available online to ease reproducibility.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dense Text Retrieval based on Pretrained Language Models: A Survey 基于预训练语言模型的密集文本检索:调查
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-18 DOI: 10.1145/3637870
Wayne Xin Zhao, Jing Liu, Ruiyang Ren, Ji-Rong Wen
{"title":"Dense Text Retrieval based on Pretrained Language Models: A Survey","authors":"Wayne Xin Zhao, Jing Liu, Ruiyang Ren, Ji-Rong Wen","doi":"10.1145/3637870","DOIUrl":"https://doi.org/10.1145/3637870","url":null,"abstract":"<p>Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user’s queries in natural language. From heuristic-based retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn text representations and model the relevance matching. The recent success of pretrained language models (PLM) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the semantic representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is called <i>dense retrieval</i>, since it employs dense vectors to represent the texts. Considering the rapid progress on dense retrieval, this survey systematically reviews the recent progress on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related studies by four major aspects, including architecture, training, indexing and integration, and thoroughly summarize the mainstream techniques for each aspect. We extensively collect the recent advances on this topic, and include 300+ reference papers. To support our survey, we create a website for providing useful resources, and release a code repository for dense retrieval. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relevance Feedback with Brain Signals 利用大脑信号进行相关性反馈
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-18 DOI: 10.1145/3637874
Ziyi Ye, Xiaohui Xie, Qingyao Ai, Yiqun Liu, Zhihong Wang, Weihang Su, Min Zhang
{"title":"Relevance Feedback with Brain Signals","authors":"Ziyi Ye, Xiaohui Xie, Qingyao Ai, Yiqun Liu, Zhihong Wang, Weihang Su, Min Zhang","doi":"10.1145/3637874","DOIUrl":"https://doi.org/10.1145/3637874","url":null,"abstract":"<p>The Relevance Feedback (RF) process relies on accurate and real-time relevance estimation of feedback documents to improve retrieval performance. Since collecting explicit relevance annotations imposes an extra burden on the user, extensive studies have explored using pseudo-relevance signals and implicit feedback signals as substitutes. However, such signals are indirect indicators of relevance and suffer from complex search scenarios where user interactions are absent or biased. </p><p>Recently, the advances in portable and high-precision brain-computer interface (BCI) devices have shown the possibility to monitor user’s brain activities during search process. Brain signals can directly reflect user’s psychological responses to search results and thus it can act as additional and unbiased RF signals. To explore the effectiveness of brain signals in the context of RF, we propose a novel RF framework that combines BCI-based relevance feedback with pseudo-relevance signals and implicit signals to improve the performance of document re-ranking. The experimental results on the user study dataset show that incorporating brain signals leads to significant performance improvement in our RF framework. Besides, we observe that brain signals perform particularly well in several hard search scenarios, especially when implicit signals as feedback are missing or noisy. This reveals when and how to exploit brain signals in the context of RF.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding or Manipulation: Rethinking Online Performance Gains of Modern Recommender Systems 理解还是操纵?反思现代推荐系统的在线性能收益
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-15 DOI: 10.1145/3637869
Zhengbang Zhu, Rongjun Qin, Junjie Huang, Xinyi Dai, Yang Yu†, Yong Yu, Weinan Zhang†
{"title":"Understanding or Manipulation: Rethinking Online Performance Gains of Modern Recommender Systems","authors":"Zhengbang Zhu, Rongjun Qin, Junjie Huang, Xinyi Dai, Yang Yu†, Yong Yu, Weinan Zhang†","doi":"10.1145/3637869","DOIUrl":"https://doi.org/10.1145/3637869","url":null,"abstract":"<p>Recommender systems are expected to be assistants that help human users find relevant information automatically without explicit queries. As recommender systems evolve, increasingly sophisticated learning techniques are applied and have achieved better performance in terms of user engagement metrics such as clicks and browsing time. The increase in the measured performance, however, can have two possible attributions: a better understanding of user preferences, and a more proactive ability to utilize human bounded rationality to seduce user over-consumption. A natural following question is whether current recommendation algorithms are manipulating user preferences. If so, can we measure the manipulation level? In this paper, we present a general framework for benchmarking the degree of manipulations of recommendation algorithms, in both slate recommendation and sequential recommendation scenarios. The framework consists of four stages, initial preference calculation, training data collection, algorithm training and interaction, and metrics calculation that involves two proposed metrics, Manipulation Score and Preference Shift. We benchmark some representative recommendation algorithms in both synthetic and real-world datasets under the proposed framework. We have observed that a high online click-through rate does not necessarily mean a better understanding of user initial preference, but ends in prompting users to choose more documents they initially did not favor. Moreover, we find that the training data have notable impacts on the manipulation degrees, and algorithms with more powerful modeling abilities are more sensitive to such impacts. The experiments also verified the usefulness of the proposed metrics for measuring the degree of manipulations. We advocate that future recommendation algorithm studies should be treated as an optimization problem with constrained user preference manipulations.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Effectiveness of Sampled Softmax Loss for Item Recommendation 论采样软最大损失在项目推荐中的有效性
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-13 DOI: 10.1145/3637061
Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, Tianyu Qiu, Xiangnan He
{"title":"On the Effectiveness of Sampled Softmax Loss for Item Recommendation","authors":"Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, Tianyu Qiu, Xiangnan He","doi":"10.1145/3637061","DOIUrl":"https://doi.org/10.1145/3637061","url":null,"abstract":"<p>The learning objective plays a fundamental role to build a recommender system. Most methods routinely adopt either pointwise (<i>e.g.,</i> binary cross-entropy) or pairwise (<i>e.g.,</i> BPR) loss to train the model parameters, while rarely pay attention to softmax loss, which assumes the probabilities of all classes sum up to 1, due to its computational complexity when scaling up to large datasets or intractability for streaming data where the complete item space is not always available. The sampled softmax (SSM) loss emerges as an efficient substitute for softmax loss. Its special case, InfoNCE loss, has been widely used in self-supervised learning and exhibited remarkable performance for contrastive learning. Nonetheless, limited recommendation work uses the SSM loss as the learning objective. Worse still, none of them explores its properties thoroughly and answers “Does SSM loss suit for item recommendation?” and “What are the conceptual advantages of SSM loss, as compared with the prevalent losses?”, to the best of our knowledge. </p><p>In this work, we aim to offer a better understanding of SSM for item recommendation. Specifically, we first theoretically reveal three model-agnostic advantages: (1) mitigating popularity bias, which is beneficial to long-tail recommendation; (2) mining hard negative samples, which offers informative gradients to optimize model parameters; and (3) maximizing the ranking metric, which facilitates top-<i>K</i> performance. However, based on our empirical studies, we recognize that the default choice of cosine similarity function in SSM limits its ability in learning the magnitudes of representation vectors. As such, the combinations of SSM with the models that also fall short in adjusting magnitudes (<i>e.g.,</i> matrix factorization) may result in poor representations. One step further, we provide mathematical proof that message passing schemes in graph convolution networks can adjust representation magnitude according to node degree, which naturally compensates for the shortcoming of SSM. Extensive experiments on four benchmark datasets justify our analyses, demonstrating the superiority of SSM for item recommendation. Our implementations are available in both TensorFlow and PyTorch.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138580490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-Preserving Individual-Level COVID-19 Infection Prediction via Federated Graph Learning 通过联合图学习进行保护隐私的个人级 COVID-19 感染预测
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-07 DOI: 10.1145/3633202
Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, Tao Jiang
{"title":"Privacy-Preserving Individual-Level COVID-19 Infection Prediction via Federated Graph Learning","authors":"Wenjie Fu, Huandong Wang, Chen Gao, Guanghua Liu, Yong Li, Tao Jiang","doi":"10.1145/3633202","DOIUrl":"https://doi.org/10.1145/3633202","url":null,"abstract":"<p>Accurately predicting individual-level infection state is of great value since its essential role in reducing the damage of the epidemic. However, there exists an inescapable risk of privacy leakage in the fine-grained user mobility trajectories required by individual-level infection prediction. In this paper, we focus on developing a framework of privacy-preserving individual-level infection prediction based on federated learning (FL) and graph neural networks (GNN). We propose <i>Falcon</i>, a <b>F</b>ederated gr<b>A</b>ph <b>L</b>earning method for privacy-preserving individual-level infe<b>C</b>tion predicti<b>ON</b>. It utilizes a novel hypergraph structure with spatio-temporal hyperedges to describe the complex interactions between individuals and locations in the contagion process. By organically combining the FL framework with hypergraph neural networks, the information propagation process of the graph machine learning is able to be divided into two stages distributed on the server and the clients, respectively, so as to effectively protect user privacy while transmitting high-level information. Furthermore, it elaborately designs a differential privacy perturbation mechanism as well as a plausible pseudo location generation approach to preserve user privacy in the graph structure. Besides, it introduces a cooperative coupling mechanism between the individual-level prediction model and an additional region-level model to mitigate the detrimental impacts caused by the injected obfuscation mechanisms. Extensive experimental results show that our methodology outperforms state-of-the-art algorithms and is able to protect user privacy against actual privacy attacks. Our code and datasets are available at the link: https://github.com/wjfu99/FL-epidemic.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138546759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Effective and Efficient Sparse Neural Information Retrieval 实现有效、高效的稀疏神经信息检索
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-12-02 DOI: 10.1145/3634912
Thibault Formal, Carlos Lassance, Benjamin Piwowarski, Stéphane Clinchant
{"title":"Towards Effective and Efficient Sparse Neural Information Retrieval","authors":"Thibault Formal, Carlos Lassance, Benjamin Piwowarski, Stéphane Clinchant","doi":"10.1145/3634912","DOIUrl":"https://doi.org/10.1145/3634912","url":null,"abstract":"<p>Sparse representation learning based on Pre-trained Language Models has seen a growing interest in Information Retrieval. Such approaches can take advantage of the proven efficiency of inverted indexes, and inherit desirable IR priors such as explicit lexical matching or some degree of interpretability. In this work, we thoroughly develop the framework of sparse representation learning in IR, which unifies term weighting and expansion in a supervised setting. We then build on SPLADE – a sparse expansion-based retriever – and show to which extent it is able to benefit from the same training improvements as dense bi-encoders, by studying the effect of distillation, hard negative mining as well as the Pre-trained Language Model’s initialization on its <i>effectiveness</i> – leading to state-of-the-art results in both in- and out-of-domain evaluation settings (SPLADE++). We furthermore propose <i>efficiency</i> improvements, allowing us to reach latency requirements on par with traditional keyword-based approaches (Efficient-SPLADE).</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Augmentation for Sample Efficient and Robust Document Ranking 基于样本高效鲁棒排序的数据增强
IF 5.6 2区 计算机科学
ACM Transactions on Information Systems Pub Date : 2023-11-29 DOI: 10.1145/3634911
Abhijit Anand, Jurek Leonhardt, Jaspreet Singh, Koustav Rudra, Avishek Anand
{"title":"Data Augmentation for Sample Efficient and Robust Document Ranking","authors":"Abhijit Anand, Jurek Leonhardt, Jaspreet Singh, Koustav Rudra, Avishek Anand","doi":"10.1145/3634911","DOIUrl":"https://doi.org/10.1145/3634911","url":null,"abstract":"<p>Contextual ranking models have delivered impressive performance improvements over classical models in the document ranking task. However, these highly over-parameterized models tend to be data-hungry and require large amounts of data even for fine-tuning. In this paper, we propose data-augmentation methods for effective and robust ranking performance. One of the key benefits of using data augmentation is in achieving <i>sample efficiency</i> or learning effectively when we have only a small amount of training data. We propose supervised and unsupervised data augmentation schemes by creating training data using parts of the relevant documents in the query-document pairs. We then adapt a family of contrastive losses for the document ranking task that can exploit the augmented data to learn an effective ranking model. Our extensive experiments on subsets of the <span>MS MARCO</span> and <span>TREC-DL</span> test sets show that data augmentation, along with the ranking-adapted contrastive losses, results in performance improvements under most dataset sizes. Apart from sample efficiency, we conclusively show that data augmentation results in robust models when transferred to out-of-domain benchmarks. Our performance improvements in in-domain and more prominently in out-of-domain benchmarks show that augmentation regularizes the ranking model and improves its robustness and generalization capability.</p>","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138537120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信