{"title":"基于公理偏好模型的信息检索评价方法","authors":"Fernando Giner","doi":"10.1145/3632171","DOIUrl":null,"url":null,"abstract":"Information retrieval (IR) evaluation measures are essential for capturing the relevance of documents to topics, and determining the task performance efficiency of retrieval systems. The study of IR evaluation measures through their formal properties enables a better understanding of their suitability for a specific task. Some works have modelled the effectiveness of retrieval measures with axioms, heuristics or desirable properties, leading to order relationships on the set where they are defined. Each of these ordering structures constitute an axiomatic model of preferences (AMP), which can be considered as an ’ideal’ scenario of retrieval. Based on lattice theory and on the representational theory of measurement, this work formally explores numeric, metric and scale properties of some effectiveness measures defined on AMPs. In some of these scenarios, retrieval measures are completely determined from the scores of a subset of document rankings: join-irreducible elements. All the possible metrics and pseudometrics, defined on these structures are expressed in terms of the join-irreducible elements. The deduced scale properties of the precision, recall, F -measure, RBP , DCG and AP confirm some recent results in the IR field.","PeriodicalId":50936,"journal":{"name":"ACM Transactions on Information Systems","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Information Retrieval Evaluation Measures Defined on Some Axiomatic Models of Preferences\",\"authors\":\"Fernando Giner\",\"doi\":\"10.1145/3632171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information retrieval (IR) evaluation measures are essential for capturing the relevance of documents to topics, and determining the task performance efficiency of retrieval systems. The study of IR evaluation measures through their formal properties enables a better understanding of their suitability for a specific task. Some works have modelled the effectiveness of retrieval measures with axioms, heuristics or desirable properties, leading to order relationships on the set where they are defined. Each of these ordering structures constitute an axiomatic model of preferences (AMP), which can be considered as an ’ideal’ scenario of retrieval. Based on lattice theory and on the representational theory of measurement, this work formally explores numeric, metric and scale properties of some effectiveness measures defined on AMPs. In some of these scenarios, retrieval measures are completely determined from the scores of a subset of document rankings: join-irreducible elements. All the possible metrics and pseudometrics, defined on these structures are expressed in terms of the join-irreducible elements. The deduced scale properties of the precision, recall, F -measure, RBP , DCG and AP confirm some recent results in the IR field.\",\"PeriodicalId\":50936,\"journal\":{\"name\":\"ACM Transactions on Information Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3632171\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3632171","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Information Retrieval Evaluation Measures Defined on Some Axiomatic Models of Preferences
Information retrieval (IR) evaluation measures are essential for capturing the relevance of documents to topics, and determining the task performance efficiency of retrieval systems. The study of IR evaluation measures through their formal properties enables a better understanding of their suitability for a specific task. Some works have modelled the effectiveness of retrieval measures with axioms, heuristics or desirable properties, leading to order relationships on the set where they are defined. Each of these ordering structures constitute an axiomatic model of preferences (AMP), which can be considered as an ’ideal’ scenario of retrieval. Based on lattice theory and on the representational theory of measurement, this work formally explores numeric, metric and scale properties of some effectiveness measures defined on AMPs. In some of these scenarios, retrieval measures are completely determined from the scores of a subset of document rankings: join-irreducible elements. All the possible metrics and pseudometrics, defined on these structures are expressed in terms of the join-irreducible elements. The deduced scale properties of the precision, recall, F -measure, RBP , DCG and AP confirm some recent results in the IR field.
期刊介绍:
The ACM Transactions on Information Systems (TOIS) publishes papers on information retrieval (such as search engines, recommender systems) that contain:
new principled information retrieval models or algorithms with sound empirical validation;
observational, experimental and/or theoretical studies yielding new insights into information retrieval or information seeking;
accounts of applications of existing information retrieval techniques that shed light on the strengths and weaknesses of the techniques;
formalization of new information retrieval or information seeking tasks and of methods for evaluating the performance on those tasks;
development of content (text, image, speech, video, etc) analysis methods to support information retrieval and information seeking;
development of computational models of user information preferences and interaction behaviors;
creation and analysis of evaluation methodologies for information retrieval and information seeking; or
surveys of existing work that propose a significant synthesis.
The information retrieval scope of ACM Transactions on Information Systems (TOIS) appeals to industry practitioners for its wealth of creative ideas, and to academic researchers for its descriptions of their colleagues'' work.