Nitrogen最新文献

筛选
英文 中文
Sustainability Analysis of Nitrogen Use Efficiency in Soybean-Corn Succession Crops of Midwest Brazil 巴西中西部大豆-玉米继代作物氮利用效率的可持续性分析
Nitrogen Pub Date : 2024-03-12 DOI: 10.3390/nitrogen5010016
Francisco Gilberto Erthal Risi, C. M. Hüther, C. Righi, R. C. Umburanas, T. Tezotto, D. Dourado Neto, Klaus Reichardt, Carlos Rodrigues Pereira
{"title":"Sustainability Analysis of Nitrogen Use Efficiency in Soybean-Corn Succession Crops of Midwest Brazil","authors":"Francisco Gilberto Erthal Risi, C. M. Hüther, C. Righi, R. C. Umburanas, T. Tezotto, D. Dourado Neto, Klaus Reichardt, Carlos Rodrigues Pereira","doi":"10.3390/nitrogen5010016","DOIUrl":"https://doi.org/10.3390/nitrogen5010016","url":null,"abstract":"Nitrogen (N) is abundant in the atmosphere as N2, which is converted into reactive forms (Nr) for plant assimilation. In pre-industrial times, atmospheric N2 conversion to Nr balanced Nr reconversion to N2, but 20th-century human activity intensified this conversion via synthetic fertilizers, biological N2 fixation, and fossil fuel burning. The surplus of Nr detrimentally impacts ecosystems and human well-being. This study aimed to assess the N use efficiency in the soil–plant system of the soybean-corn succession (SPSS,C) in Mato Grosso and Mato Grosso do Sul, Brazil’s midwest. We estimated N macrofluxes in SPSS,C and identified key agro-environmental indicators. Between 2008 and 2020, the yearly sowed area for the SPSS,C increased by 3.3-fold (currently 7.3 million ha). The average annual input of net anthropogenic Nr, average annual N balance, and N loss in SPSS,C was estimated to be ~204 kg [N] ha−1, 57 kg [N] ha−1, and 30 kg [N] ha−1, respectively, indicating persistent N accumulation and loss. The average results of the agronomic efficiency and N retention indicator in the SPSS,C was 0.71 and 0.90, respectively. Modest N use efficiency results reflect N loss effects. Despite these limitations, there are opportunities in SPSS,C for management strategies to reduce N loss and enhance efficiency.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"56 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140250351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do the Leaves of Multiple Invasive Plants Decompose More Easily than a Native Plant’s under Nitrogen Deposition with Different Forms? 在不同形式的氮沉积条件下,多种入侵植物的叶子是否比本地植物的叶子更容易腐烂?
Nitrogen Pub Date : 2024-03-04 DOI: 10.3390/nitrogen5010014
Chuang Li, Yue Li, Shanshan Zhong, Zhelun Xu, Zhongyi Xu, Mawei Zhu, Yuqing Wei, Cong-yan Wang, Daolin Du
{"title":"Do the Leaves of Multiple Invasive Plants Decompose More Easily than a Native Plant’s under Nitrogen Deposition with Different Forms?","authors":"Chuang Li, Yue Li, Shanshan Zhong, Zhelun Xu, Zhongyi Xu, Mawei Zhu, Yuqing Wei, Cong-yan Wang, Daolin Du","doi":"10.3390/nitrogen5010014","DOIUrl":"https://doi.org/10.3390/nitrogen5010014","url":null,"abstract":"This study aimed to clarify the differences in the decomposition rates, soil carbon and nitrogen contents, soil enzyme activities, and the structure of the soil bacterial community between the four Asteraceae invasive plants (AIPs), Bidens pilosa L., Conyza canadensis (L.) Cronq., Solidago canadensis L., and Symphyotrichum subulatum (Michx.) G.L. Nesom, and the native plant Pterocypsela laciniata (Houtt.) Shih under the artificially modeled nitrogen with four forms (including nitrate, ammonium, urea, and the mixed nitrogen forms with an equal mixture of three individual nitrogen forms). The mixed nitrogen forms significantly increased the decomposition rate of the four AIPs and P. laciniata. The positive effects of the mixed nitrogen forms on the decomposition rate of the four AIPs and P. laciniata were obviously greater than those of individual nitrogen forms. Nitrogen with four forms visibly up- or down-regulated the dominant role of predominant soil bacterial biomarkers, and significantly increased the species number, richness, and phylogenetic diversity of the soil bacterial community, as well as the number of most of the functional gene pathways of the soil bacterial communities involved in the decomposition process. The decomposition rate of the four AIPs was similar to that of P. laciniata. The leaves of C. canadensis decomposed more easily than those of S. subulatum. The decomposition process of the four AIPs caused remarkable changes in the relative abundance of several taxa of the soil bacterial community and soil bacterial beta diversity, and caused apparent up- or down-regulation in the dominant role of predominant soil bacterial biomarkers and the number of several functional gene pathways of the soil bacterial communities involved in the decomposition process.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140267065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing the Nitrogen Use Efficiency in Vegetable Crops 优化蔬菜作物的氮利用效率
Nitrogen Pub Date : 2024-02-05 DOI: 10.3390/nitrogen5010008
Hector Valenzuela
{"title":"Optimizing the Nitrogen Use Efficiency in Vegetable Crops","authors":"Hector Valenzuela","doi":"10.3390/nitrogen5010008","DOIUrl":"https://doi.org/10.3390/nitrogen5010008","url":null,"abstract":"Nitrogen (N) is the most limiting nutrient for the production of vegetable crops, but anthropogenic sources pose risks due to its transformation into several reactive forms and movement throughout the environment. The bulk of the N research to date to improve Nitrogen Use Efficiency (NUE) has followed a reductionist factorial approach focused on synthetic N application rates and crop growth response, under monocultures. The increased adoption of diversified cropping systems, organic N sources, and alternative management practices makes it more challenging to unravel N form transformation, movement, and crop uptake dynamics, in time and space. Here, based on a selected review of the recent literature, we propose a holistic approach of nutrient management to highlight key management and production variables as well as multilevel cropping system, genetic, environmental, ecological, and socioeconomic interactions to improve the N cycle and NUE. The best management strategies to improve NUE include both organic and inorganic N rate calibration studies, germplasm selection, crop rotations, identification of nutrient x nutrient interactions, and pest and water management. Agroecological practices that may improve NUE include vegetational diversification in time and space, integrated crop–livestock systems, conservation tillage, organic amendment inputs, legume-based cropping systems, as well as a landscape approach to nutrient management.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"29 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139866050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing the Nitrogen Use Efficiency in Vegetable Crops 优化蔬菜作物的氮利用效率
Nitrogen Pub Date : 2024-02-05 DOI: 10.3390/nitrogen5010008
Hector Valenzuela
{"title":"Optimizing the Nitrogen Use Efficiency in Vegetable Crops","authors":"Hector Valenzuela","doi":"10.3390/nitrogen5010008","DOIUrl":"https://doi.org/10.3390/nitrogen5010008","url":null,"abstract":"Nitrogen (N) is the most limiting nutrient for the production of vegetable crops, but anthropogenic sources pose risks due to its transformation into several reactive forms and movement throughout the environment. The bulk of the N research to date to improve Nitrogen Use Efficiency (NUE) has followed a reductionist factorial approach focused on synthetic N application rates and crop growth response, under monocultures. The increased adoption of diversified cropping systems, organic N sources, and alternative management practices makes it more challenging to unravel N form transformation, movement, and crop uptake dynamics, in time and space. Here, based on a selected review of the recent literature, we propose a holistic approach of nutrient management to highlight key management and production variables as well as multilevel cropping system, genetic, environmental, ecological, and socioeconomic interactions to improve the N cycle and NUE. The best management strategies to improve NUE include both organic and inorganic N rate calibration studies, germplasm selection, crop rotations, identification of nutrient x nutrient interactions, and pest and water management. Agroecological practices that may improve NUE include vegetational diversification in time and space, integrated crop–livestock systems, conservation tillage, organic amendment inputs, legume-based cropping systems, as well as a landscape approach to nutrient management.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139806139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Rhizobium tropici sp. Strain UD5 Peat Biofertilizer Inoculant on Growth, Yield, and Nitrogen Concentration of Common Bean 根瘤菌 Tropici sp. 菌株 UD5 泥炭生物肥接种剂对四季豆生长、产量和氮浓度的影响
Nitrogen Pub Date : 2024-02-01 DOI: 10.3390/nitrogen5010006
Auges Gatabazi, A. Ndhlala, Mireille Asanzi Mvondo-She, Semakaleng Mpai
{"title":"Effectiveness of Rhizobium tropici sp. Strain UD5 Peat Biofertilizer Inoculant on Growth, Yield, and Nitrogen Concentration of Common Bean","authors":"Auges Gatabazi, A. Ndhlala, Mireille Asanzi Mvondo-She, Semakaleng Mpai","doi":"10.3390/nitrogen5010006","DOIUrl":"https://doi.org/10.3390/nitrogen5010006","url":null,"abstract":"Common bean (Phaseolus vulgaris L.) ranks among the most produced and consumed legume crops and contains essential macro- and micronutrients. Grain yield of the food crop is markedly decreased by poor management, especially a lack of additional essential nutrient elements through the application of fertilizers. In addition to the application of fertilizers, scholarly research and crop farmers have shown that the use of biofertilizer inoculants improves the yield of legume crops. The objective of this research study was to assess the effectiveness of peat-based Rhizobium tropici sp. UD5 on the growth, yield, and nitrogen concentration of common bean. The peat inoculant contained 6.5 × 109 viable cells/g. The experiment was conducted in two climatic zones, as described by the Koppen–Gieger climatic classification system. Treatments involved the peat-based inoculant Rhizobium tropici (T0 = 0 g without inoculation, T1 = 250 g of peat inoculant of strain UD5 for 50 kg seeds, T2 = 500 g of inoculant of strain UD5, and T3 = 200 g of comparative peat inoculant). The results indicated that common-bean-inoculated formulation of R. tropici sp. strain UD5 increased the following parameters compared to the controls: plant height (T1 = 18.22%, T2 = 20.41%, and T3 = 19.93% for bioclimatic zone 1; T1 = 16.78%, T2 = 20.71%, and T3 = 19.93% for bioclimatic zone 2), root length (T1 = 13.26%, T2 = 21.28%, and T3 = 19.38% for zone 1; T1 = 15.06%, T2 = 23.70%, and T3 = 19.20% for zone 2), number of nodules (T1 = 1162.57%, T2 = 1166.36%, and T3 = 1180.30% for zone 1; T1 = 1575%, T2 = 1616.5%, and T3 = 1608.25% for zone 2), size of nodules (T1 = 224.07%, T2 = 224.07%, and T3 = 208.33% for zone 1; T1 = 166.4%, T2 = 180%, and T3 = 140% for zone 2), and yield (T1 = 40.49%, T2 = 47.10%, and T3 = 45.45% for zone 1; T1 = 62.16%, T2 = 54.05%, and T3 = 58.55% for zone 2). R. tropici sp. UD5 peat inoculant formulation also increased the nitrogen concentration in leaves compared to the control (T1 = 3.75%, T2 = 1.12%, and T3 = 8.72%) in both bioclimatic zones. The findings of this study provide significant information on the positive effect of R. tropic UD5 strain peat inoculant application in the improvement of plant growth, development, and yield through the formation of nodules.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"34 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139822273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of Rhizobium tropici sp. Strain UD5 Peat Biofertilizer Inoculant on Growth, Yield, and Nitrogen Concentration of Common Bean 根瘤菌 Tropici sp. 菌株 UD5 泥炭生物肥接种剂对四季豆生长、产量和氮浓度的影响
Nitrogen Pub Date : 2024-02-01 DOI: 10.3390/nitrogen5010006
Auges Gatabazi, A. Ndhlala, Mireille Asanzi Mvondo-She, Semakaleng Mpai
{"title":"Effectiveness of Rhizobium tropici sp. Strain UD5 Peat Biofertilizer Inoculant on Growth, Yield, and Nitrogen Concentration of Common Bean","authors":"Auges Gatabazi, A. Ndhlala, Mireille Asanzi Mvondo-She, Semakaleng Mpai","doi":"10.3390/nitrogen5010006","DOIUrl":"https://doi.org/10.3390/nitrogen5010006","url":null,"abstract":"Common bean (Phaseolus vulgaris L.) ranks among the most produced and consumed legume crops and contains essential macro- and micronutrients. Grain yield of the food crop is markedly decreased by poor management, especially a lack of additional essential nutrient elements through the application of fertilizers. In addition to the application of fertilizers, scholarly research and crop farmers have shown that the use of biofertilizer inoculants improves the yield of legume crops. The objective of this research study was to assess the effectiveness of peat-based Rhizobium tropici sp. UD5 on the growth, yield, and nitrogen concentration of common bean. The peat inoculant contained 6.5 × 109 viable cells/g. The experiment was conducted in two climatic zones, as described by the Koppen–Gieger climatic classification system. Treatments involved the peat-based inoculant Rhizobium tropici (T0 = 0 g without inoculation, T1 = 250 g of peat inoculant of strain UD5 for 50 kg seeds, T2 = 500 g of inoculant of strain UD5, and T3 = 200 g of comparative peat inoculant). The results indicated that common-bean-inoculated formulation of R. tropici sp. strain UD5 increased the following parameters compared to the controls: plant height (T1 = 18.22%, T2 = 20.41%, and T3 = 19.93% for bioclimatic zone 1; T1 = 16.78%, T2 = 20.71%, and T3 = 19.93% for bioclimatic zone 2), root length (T1 = 13.26%, T2 = 21.28%, and T3 = 19.38% for zone 1; T1 = 15.06%, T2 = 23.70%, and T3 = 19.20% for zone 2), number of nodules (T1 = 1162.57%, T2 = 1166.36%, and T3 = 1180.30% for zone 1; T1 = 1575%, T2 = 1616.5%, and T3 = 1608.25% for zone 2), size of nodules (T1 = 224.07%, T2 = 224.07%, and T3 = 208.33% for zone 1; T1 = 166.4%, T2 = 180%, and T3 = 140% for zone 2), and yield (T1 = 40.49%, T2 = 47.10%, and T3 = 45.45% for zone 1; T1 = 62.16%, T2 = 54.05%, and T3 = 58.55% for zone 2). R. tropici sp. UD5 peat inoculant formulation also increased the nitrogen concentration in leaves compared to the control (T1 = 3.75%, T2 = 1.12%, and T3 = 8.72%) in both bioclimatic zones. The findings of this study provide significant information on the positive effect of R. tropic UD5 strain peat inoculant application in the improvement of plant growth, development, and yield through the formation of nodules.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"9 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139882276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cattle-Urine-Enriched Biochar Enhances Soil Fertility, Nutrient Uptake, and Yield of Maize in a Low-Productive Soil 牛尿素富集生物炭提高了低产土壤的土壤肥力、养分吸收和玉米产量
Nitrogen Pub Date : 2024-01-02 DOI: 10.3390/nitrogen5010002
N. Pandit, Pragati Sipkhan, Shiva Shankar Sharma, Darmaraj Dawadi, S. Vista, Prashant Raut
{"title":"Cattle-Urine-Enriched Biochar Enhances Soil Fertility, Nutrient Uptake, and Yield of Maize in a Low-Productive Soil","authors":"N. Pandit, Pragati Sipkhan, Shiva Shankar Sharma, Darmaraj Dawadi, S. Vista, Prashant Raut","doi":"10.3390/nitrogen5010002","DOIUrl":"https://doi.org/10.3390/nitrogen5010002","url":null,"abstract":"Poor soil fertility, imbalanced fertilization, and limited use of organic fertilizer by farmers are significant limitations contributing to lower crop productivity in Nepal. Biochar-based organic fertilizers have been identified as efficient soil amendments to improve soil fertility and boost crop yields. In this study, we investigated the effects of biochar-based organic fertilizers on soil properties, fertilizing efficiency, and maize yields in low-productivity Nepalese soil. A field trial was conducted using a randomized complete block design comprising four treatments with three replications: (1) control without biochar (CK), (2) biochar (BC), (3) biochar + manure (BC+M), and (4) urine-enriched biochar + manure (BU+M). Recommended NPK fertilizers were applied to all plots, including the control. Urine-enriched biochar (BU+M) significantly improved soil pH, organic carbon, and soil nutrient levels (N, P, and K) compared to the control (CK). Total N, available P, and K were significantly higher (p < 0.05) in BU+M treatments compared to the other two biochar amendments (BC and BC+M). A similar trend was observed in the NPK uptake by plants, with BU+M outperforming CK, BC, and BC+M. Moreover, BU+M increased (p < 0.05) the partial factor of productivity of N (PFPN) and P (PFPP) compared to CK. The application of urine-enriched biochar resulted in a 62% increase in maize yield compared to the CK. These findings suggest that farmers can improve soil fertility and increase grain production with the use of urine-enriched biochar, which can be easily produced by farmers themselves using locally available feedstocks and cattle urine.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"56 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139390106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrate/Ammonium Ratios and Nitrogen Deficiency Impact on Nutrient Absorption and Photosynthetic Efficiency of Cedrela odorata 硝酸盐/铵比率和缺氮对雪松营养吸收和光合效率的影响
Nitrogen Pub Date : 2023-12-25 DOI: 10.3390/nitrogen5010001
S. Rosado, José Zilton Lopes Santos, Ives San Diego Amaral Saraiva, Nonato Junior Ribeiro dos Santos, Tainah Manuela Benlolo Barbosa, Josinaldo Lopes Araujo
{"title":"Nitrate/Ammonium Ratios and Nitrogen Deficiency Impact on Nutrient Absorption and Photosynthetic Efficiency of Cedrela odorata","authors":"S. Rosado, José Zilton Lopes Santos, Ives San Diego Amaral Saraiva, Nonato Junior Ribeiro dos Santos, Tainah Manuela Benlolo Barbosa, Josinaldo Lopes Araujo","doi":"10.3390/nitrogen5010001","DOIUrl":"https://doi.org/10.3390/nitrogen5010001","url":null,"abstract":"Nitrate (NO3−) and ammonium (NH4+) are the primary forms of nitrogen (N) taken up by plants and can exhibit different effects on plant nutrition, photosynthesis, and growth. The objective was to investigate the influence of nitrate/ammonium proportions (%) on the nutritional status, photosynthetic parameters, and the development of Cedrela odorata seedlings after 150 days of cultivation. We tested six nitrate/ammonium ratios (100/0; 80/20; 60/40; 40/60; 20/80; and 0/100 of NO3− and NH4+, respectively), plus a control treatment (without N supply). Based on the results, the species responds to the supply of N; however, the NO3− and NH4+ proportions did not show any significant effect on plant growth. The deficiency of nitrogen (N) in Cedrela odorata decreases the photosynthetic rate, nutrient absorption, and initial growth of this species. Increasing the proportion of N in the form of nitrate inhibited the absorption of S (sulfur) but did not interfere with the accumulation of N, Ca (calcium), Mg (magnesium), Mn (manganese), Zn (zinc), B (boron), and Cu (copper). Cedrela odorata apparently does not distinguish between nitrate and ammonium in the N absorption process, since the proportions between these forms of N did not affect its photosynthetic rate, nutrient accumulation, or growth.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139157948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Pasture Stocking Method on Surface Runoff and Nutrient Loss in the US Upper Midwest 美国上中西部地区牧场放牧方法对地表径流和养分流失的影响
Nitrogen Pub Date : 2023-11-16 DOI: 10.3390/nitrogen4040025
E. Young, J. Sherman, Brooke R. Bembeneck, Randall D. Jackson, J. Cavadini, Matthew S. Akins
{"title":"Influence of Pasture Stocking Method on Surface Runoff and Nutrient Loss in the US Upper Midwest","authors":"E. Young, J. Sherman, Brooke R. Bembeneck, Randall D. Jackson, J. Cavadini, Matthew S. Akins","doi":"10.3390/nitrogen4040025","DOIUrl":"https://doi.org/10.3390/nitrogen4040025","url":null,"abstract":"Grazing and hay forage crops reduce erosion compared to annual crops, but few studies have compared soil and nutrient loss among grazing systems compared to a control. We evaluated runoff water quality and nutrient loss among three grazing systems and a hay crop production field with manure application (control) using a paired watershed design. Four edge-of-field sites at a research farm in central Wisconsin were managed as hay during calibration (2013–2018) followed by a grazing treatment phase (2018–2020). Grazing treatments of different stocking methods included continuous stocking (CS), primary paddock stocking (PPS), and adaptive multi-paddock stocking (AMPS). Runoff, sediment, nitrogen (N), and phosphorus (P) loads were monitored year-round. Grazing increased average runoff volume by as much as 1.7-fold depending on stocking method and tended to decrease event mean N and P concentrations. CS had larger mean sediment (2.0-fold), total N (1.9-fold), and total P loads (1.2-fold) compared to the control and had the lowest average pasture forage mass. AMPS had lower N and P loss as a percentage of that applied from manure application/livestock excretion (1.3 and 1.6%, respectively) compared to the control (2.5 and 2.1%), PPS (2.5 and 2.6%), and CS (3.2 and 3.0%). Stocking method had a marked impact on nutrient loss in runoff from these systems, suggesting water quality models should account for pasture management, but nutrient losses from all perennial forage systems were small relative to previous data from annual cropping systems.","PeriodicalId":509275,"journal":{"name":"Nitrogen","volume":"6 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139269689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信