{"title":"A Locally One-Dimensional Scheme for the Third Initial Boundary Value Problem for a Multidimensional Sobolev-Type Equation with a Memory Effect","authors":"М.Х. Бештоков","doi":"10.46698/p2394-5241-9362-p","DOIUrl":"https://doi.org/10.46698/p2394-5241-9362-p","url":null,"abstract":"Исследуется многомерное уравнение Соболевского типа с эффектом памяти и граничными условиями третьего рода. Для численного решения поставленной задачи исходная многомерная задача сводится к третьей начально-краевой задаче для интегро-дифференциального уравнения параболического типа с малым параметром. Доказана сходимость решения полученной модифицированной задачи к решению исходной задачи при стремлении малого параметра к нулю. Для модифицированной задачи стоится локально-одномерная разностная схема А. А. Самарского, основная идея которой состоит в сведении перехода со слоя на слой к последовательному решению ряда одномерных задач по каждому из координатных направлений. При этом погрешность аппроксимации аддитивной схемы определяется как сумма невязок для всех промежуточных схем, то есть, построенная аддитивная схема обладает суммарной аппроксимацией, таким образом, что каждая из промежуточных схем цепочки может не аппроксимировать исходную задачу, аппроксимация достигается за счет суммирования всех невязок для всех промежуточных схем. С помощью метода энергетических неравенств получены априорные оценки, из чего следуют единственность и устойчивость решения локально-одномерной разностной схемы, а также сходимость решения схемы к решению исходной дифференциальной задачи.","PeriodicalId":509237,"journal":{"name":"Владикавказский математический журнал","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140366156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotics of Solutions to a Third-Order Equation in a Neighborhood of an Irregular Singular Point","authors":"М.В. Коровина, О.А. Матевосян, И.Н. Смирнов","doi":"10.46698/h0288-6649-3374-o","DOIUrl":"https://doi.org/10.46698/h0288-6649-3374-o","url":null,"abstract":"Статья посвящена построению равномерных асимптотик решений уравнения 3-го порядка с голоморфными коэффициентами с произвольной иррегулярной особенностью в пространстве функций экспоненциального роста. В общем виде задача построения асимптотик решений дифференциальных уравнений в окрестностях иррегулярных особых точек была сформулированна Пуанкаре в его статьях посвященных аналитической теории дифференциальных уравнений. Задача построения асимптотик для уравнений с вырождениями произвольного порядка в случае кратных корней решена только для некоторых частных случаев, например, когда уравнение имеет второй порядок. Основным методом решения задачи для уравнений с вырождениями старших порядков являются метод повторного квантования, основанный на преобразовании Лапласа~--- Бореля, который был создан для построения асимптотик решений дифференциальных уравнений в окрестности иррегулярных особых точек в случае, когда основной символ дифференциального оператора имеет кратные корни. Задача о построении асимптотик решений уравнений старших порядков значительно сложнее. Для ее решения применяется метод повторного квантования, который не потребовался при решении аналогичной задачи для уравнений 2-го порядка. Здесь решается модельная задача, которая является важным следующим шагом к решению общей проблемы сформулированной Пуанкаре, проблемы построения асимптотик решений в окрестности произвольной иррегулярной особой точки для уравнения произвольного порядка. Задача дальнейших исследований состоит в обобщении метода решения, изложенного в статье на уравнения произвольных порядков.","PeriodicalId":509237,"journal":{"name":"Владикавказский математический журнал","volume":"57 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}