{"title":"Asymptotics of Solutions to a Third-Order Equation in a Neighborhood of an Irregular Singular Point","authors":"М.В. Коровина, О.А. Матевосян, И.Н. Смирнов","doi":"10.46698/h0288-6649-3374-o","DOIUrl":null,"url":null,"abstract":"Статья посвящена построению равномерных асимптотик решений уравнения 3-го порядка с голоморфными коэффициентами с произвольной иррегулярной особенностью в пространстве функций экспоненциального роста. В общем виде задача построения асимптотик решений дифференциальных уравнений в окрестностях иррегулярных особых точек была сформулированна Пуанкаре в его статьях посвященных аналитической теории дифференциальных уравнений. Задача построения асимптотик для уравнений с вырождениями произвольного порядка в случае кратных корней решена только для некоторых частных случаев, например, когда уравнение имеет второй порядок. Основным методом решения задачи для уравнений с вырождениями старших порядков являются метод повторного квантования, основанный на преобразовании Лапласа~--- Бореля, который был создан для построения асимптотик решений дифференциальных уравнений в окрестности иррегулярных особых точек в случае, когда основной символ дифференциального оператора имеет кратные корни. Задача о построении асимптотик решений уравнений старших порядков значительно сложнее. Для ее решения применяется метод повторного квантования, который не потребовался при решении аналогичной задачи для уравнений 2-го порядка. Здесь решается модельная задача, которая является важным следующим шагом к решению общей проблемы сформулированной Пуанкаре, проблемы построения асимптотик решений в окрестности произвольной иррегулярной особой точки для уравнения произвольного порядка. Задача дальнейших исследований состоит в обобщении метода решения, изложенного в статье на уравнения произвольных порядков.","PeriodicalId":509237,"journal":{"name":"Владикавказский математический журнал","volume":"57 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Владикавказский математический журнал","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46698/h0288-6649-3374-o","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Статья посвящена построению равномерных асимптотик решений уравнения 3-го порядка с голоморфными коэффициентами с произвольной иррегулярной особенностью в пространстве функций экспоненциального роста. В общем виде задача построения асимптотик решений дифференциальных уравнений в окрестностях иррегулярных особых точек была сформулированна Пуанкаре в его статьях посвященных аналитической теории дифференциальных уравнений. Задача построения асимптотик для уравнений с вырождениями произвольного порядка в случае кратных корней решена только для некоторых частных случаев, например, когда уравнение имеет второй порядок. Основным методом решения задачи для уравнений с вырождениями старших порядков являются метод повторного квантования, основанный на преобразовании Лапласа~--- Бореля, который был создан для построения асимптотик решений дифференциальных уравнений в окрестности иррегулярных особых точек в случае, когда основной символ дифференциального оператора имеет кратные корни. Задача о построении асимптотик решений уравнений старших порядков значительно сложнее. Для ее решения применяется метод повторного квантования, который не потребовался при решении аналогичной задачи для уравнений 2-го порядка. Здесь решается модельная задача, которая является важным следующим шагом к решению общей проблемы сформулированной Пуанкаре, проблемы построения асимптотик решений в окрестности произвольной иррегулярной особой точки для уравнения произвольного порядка. Задача дальнейших исследований состоит в обобщении метода решения, изложенного в статье на уравнения произвольных порядков.