ToxicsPub Date : 2024-05-10DOI: 10.3390/toxics12050352
Beatriz Neves, Miguel Oliveira, Carolina Frazão, Mónica Almeida, Ricardo J. B. Pinto, E. Figueira, Adília Pires
{"title":"The Role of Life Stages in the Sensitivity of Hediste diversicolor to Nanoplastics: A Case Study with Poly(Methyl)Methacrylate (PMMA)","authors":"Beatriz Neves, Miguel Oliveira, Carolina Frazão, Mónica Almeida, Ricardo J. B. Pinto, E. Figueira, Adília Pires","doi":"10.3390/toxics12050352","DOIUrl":"https://doi.org/10.3390/toxics12050352","url":null,"abstract":"The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics—NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 68","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-10DOI: 10.3390/toxics12050353
Yuqi Zhu, Yili Zhang, Hui Chen, Lisha Zhang, Chensi Shen
{"title":"Stress Responses and Ammonia Nitrogen Removal Efficiency of Oocystis lacustris in Saline Ammonium-Contaminated Wastewater Treatment","authors":"Yuqi Zhu, Yili Zhang, Hui Chen, Lisha Zhang, Chensi Shen","doi":"10.3390/toxics12050353","DOIUrl":"https://doi.org/10.3390/toxics12050353","url":null,"abstract":"The increasing concern over climate change has spurred significant interest in exploring the potential of microalgae for wastewater treatment. Among the various types of industrial wastewaters, high-salinity NH4+-N wastewater stands out as a common challenge. Investigating microalgae’s resilience to NH4+-N under high-salinity conditions and their efficacy in NH4+-N utilization is crucial for advancing industrial wastewater microalgae treatment technologies. This study evaluated the effectiveness of employing nitrogen-efficient microalgae, specifically Oocystis lacustris, for NH4+-N removal from saline wastewater. The results revealed Oocystis lacustris’s tolerance to a Na2SO4 concentration of 5 g/L. When the Na2SO4 concentration reached 10 g/L, the growth inhibition experienced by Oocystis lacustris began to decrease on the 6th day of cultivation, with significant alleviation observed by the 7th day. Additionally, the toxic mechanism of saline NH4+-N wastewater on Oocystis lacustris was analyzed through various parameters, including chlorophyll-a, soluble protein, oxidative stress indicators, key nitrogen metabolism enzymes, and microscopic observations of algal cells. The results demonstrated that when the Oocystis lacustris was in the stationary growth phase with an initial density of 2 × 107 cells/L, NH4+-N concentrations of 1, 5, and 10 mg/L achieved almost 100% removal of the microalgae on the 1st, 2nd, and 4th days of treatment, respectively. On the other hand, saline NH4+-N wastewater minimally impacted photosynthesis, protein synthesis, and antioxidant systems within algal cells. Additionally, NH4+-N within the cells was assimilated into glutamic acid through glutamate dehydrogenase-mediated pathways besides the conventional pathway involving NH4+-N conversion into glutamine and assimilation amino acids.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-09DOI: 10.3390/toxics12050349
Niki Tagkalidou, Cristiana Roberta Multisanti, M. Bleda, Juliette Bedrossiantz, E. Prats, Caterina Faggio, Carlos Barata, D. Raldúa
{"title":"Analyzing the Effects of Age, Time of Day, and Experiment on the Basal Locomotor Activity and Light-Off Visual Motor Response Assays in Zebrafish Larvae","authors":"Niki Tagkalidou, Cristiana Roberta Multisanti, M. Bleda, Juliette Bedrossiantz, E. Prats, Caterina Faggio, Carlos Barata, D. Raldúa","doi":"10.3390/toxics12050349","DOIUrl":"https://doi.org/10.3390/toxics12050349","url":null,"abstract":"The recent availability of commercial platforms for behavioral analyses in zebrafish larvae based on video-tracking technologies has exponentially increased the number of studies analyzing different behaviors in this model organism to assess neurotoxicity. Among the most commonly used assays in zebrafish larvae are basal locomotor activity (BLA) and visual motor responses (VMRs). However, the effect of different intrinsic and extrinsic factors that can significantly alter the outcome of these assays is still not well understood. In this work, we have analyzed the influence of age (5–8 days post-fertilization), time of day (8:00, 10:00, 12:00, 14:00; 16:00, 18:00, and 20:00 h), and experiment (three experiments performed at different days) on BLA and VMR results (4004 analyses for each behavior) in 143 larvae. The results from both behaviors were adjusted to a random-effects linear regression model using generalized least squares (GLSs), including in the model the effect of the three variables, the second-way interactions between them, and the three-way interaction. The results presented in this manuscript show a specific effect of all three intrinsic factors and their interactions on both behaviors, supporting the view that the most stable time period for performing these behavioral assays is from 10:00 am to 04:00 pm, with some differences depending on the age of the larva and the behavioral test.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exposure to a PFOA, PFOS and PFHxS Mixture during Gestation and Lactation Alters the Liver Proteome in Offspring of CD-1 Mice","authors":"Emily Kaye, E. Marques, Juliana Agudelo Areiza, Seyed Mohamad Sadegh Modaresi, Angela Slitt","doi":"10.3390/toxics12050348","DOIUrl":"https://doi.org/10.3390/toxics12050348","url":null,"abstract":"Perfluroalkyl substances (PFASs) are persistent man-made chemicals considered to be emerging pollutants, with Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), and Perfluorohexanesulphonic acid (PFHxS) being linked to hepatotoxicity and steatosis. PFOA, PFOS, and PFHxS can undergo placental and lactational transfer, which results in PFOA, PFOS, and PFHxS distribution to the neonatal liver. Moreover, in pregnant dams, exposure to a PFAS mixture, in combination with a high fat diet, increased hepatic steatosis in offspring at postnatal day 21, but the mechanisms have not been elucidated. It was hypothesized that gestational/lactational PFAS exposure would alter the pup liver proteome and biochemical/signaling pathways. Timed-pregnant CD-1 dams were fed a standard chow or 60% kcal high-fat diet. From GD1 until PND20, dams were dosed via oral gavage with vehicle (0.5% Tween 20), individual doses of PFOA, PFOS, PFHxS at 1 mg/kg, or a mixture (1 mg/kg each, totaling 3 mg/kg). Livers were collected from PND21 offspring and SWATH-MS proteomics was performed. IPA analysis revealed PFAS exposure modified disease and biological function pathways involved in liver damage, xenobiotics, and lipid regulation in the PND21 liver. These pathways included lipid and fatty acid transport, storage, oxidation, and synthesis, as well as xenobiotic metabolism and transport, and liver damage and inflammation. This indicates the pup liver proteome is altered via maternal exposure and predisposes the pup to metabolic dysfunctions.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140994382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-08DOI: 10.3390/toxics12050343
Mengyuan Lu, Yang Liu, Xinning Zheng, Wenjuan Liu, Yang Liu, J. Bao, Ao Feng, Yueyao Bao, Jiangyong Diao, Hongyang Liu
{"title":"Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide","authors":"Mengyuan Lu, Yang Liu, Xinning Zheng, Wenjuan Liu, Yang Liu, J. Bao, Ao Feng, Yueyao Bao, Jiangyong Diao, Hongyang Liu","doi":"10.3390/toxics12050343","DOIUrl":"https://doi.org/10.3390/toxics12050343","url":null,"abstract":"Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-08DOI: 10.3390/toxics12050344
B. Cieślik, Oskar Ronda, Elżbieta Grządka, J. Orzeł, Justyna Płotka-Wasylka
{"title":"Comparative Analysis of Laboratory-Made and Industrial-Made Sewage Sludge Ash: Implications for Effective Management Strategy Development","authors":"B. Cieślik, Oskar Ronda, Elżbieta Grządka, J. Orzeł, Justyna Płotka-Wasylka","doi":"10.3390/toxics12050344","DOIUrl":"https://doi.org/10.3390/toxics12050344","url":null,"abstract":"In the pursuit of environmentally and economically sustainable sewage sludge ash (SSA) management methods, researchers often employ laboratory-made SSA (L-SSA) as a substitute for industrial-made SSA (I-SSA) produced in fluidized bed furnaces. To check whether L-SSA is a material that imitates I-SSA well, the fractionation of metals whose presence is a significant problem during SSA management was performed. In addition, the grain distribution, specific surface area, and textural properties of the tested materials were examined. Differences in total Pb and Hg content and mobility of Cu, Ni, Mn, and Zn were observed between I-SSA and L-SSA. Larger particle sizes of L-SSA compared to I-SSA were confirmed, while comparable textural properties and specific surface area of both types of materials were maintained. Based on the results, it was concluded that L-SSA is chemically different compared to I-SSA, and that L-SSA should not be used as a reference in research focused on the design of SSA management methods. Moreover, fractionation of metals was performed in disposed fluidized beds (FBs), which are diverted to non-hazardous waste landfills without prior analysis. It has been proven that studied metals are present in FBs as abundantly as in SSA, while Cu, Mn, and Ni may show higher mobility than in I-SSA.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microplastics and Endocrine Disruptors in Typical Wastewater Treatment Plants in Megacity Shanghai","authors":"Yuxiao Tong, Manjun Xie, Hanwen Xv, Ruihua Sun, Qian Wang, Juanying Li","doi":"10.3390/toxics12050345","DOIUrl":"https://doi.org/10.3390/toxics12050345","url":null,"abstract":"The fast development of China’s urbanization has led to a notable release of emerging pollutants, including microplastics (MPs) and endocrine disruptors (EDCs). Generally, these pollutants enter the coastal environment through the discharge of wastewater treatment plants (WWTPs) and finally threaten the organisms in the receiving waterbody. The study investigated the environmental behavior of MPs and EDCs in two typical WWTPs in one of the megacities in China, Shanghai. The abundance of MPs in the influent ranged from 321 to 976 items/L. Four shapes (films, fragments, fibers, and microbead) were found, while fibers and films dominated. Transparent (31–63%) and white (20–47%) MPs were more frequently observed, while polyethylene terephthalate, cellulose, and cellophane were the main polymetric materials. The size of the MPs fell between 15.8 μm and 2220 μm, and the smaller one (<500 μm) dominated. The removal efficiencies of the two WWTPs for MPs ranged from 64% to 92%, and both WWTPs performed better for large pieces of MPs (>500 μm). For EDCs, total concentrations in the influent were detected, ranging from 113 to 2780 ng/L. Two groups, including phenolic estrogens (PEs) and steroid estrogens (SEs), were detected, and PEs, especially bisphenol A (BPA), were the predominant individuals among the studied EDCs. Specifically, PEs ranged from 82.8 to 2637 ng/L, while SEs ranged from 27.3 to 143 ng/L. The removal efficiencies of the WWTPs for EDCs varied (82.8–100%) as well, possibly due to the different treatment compartments and contamination load in the influent. Seasonal variations for both MPs and EDCs were observed. Specifically, concentrations of MPs and EDCs in WWTPs influent were higher in the wet season, as well as the removal efficiency. Furthermore, there was a correlation observed between the concentrations of MPs and EDCs, suggesting that MPs and EDCs may originate from the same source and that EDCs released by MPs cannot be ignored during treatment. Finally, the study evaluated the environmental risk of the effluents. MPs led to a minor risk (Level I), while EDCs might lead to an adverse impact on algae (RQs = 0.0014–0.024) and fish (RQs = 3.4–30.2). In summary, WWTPs received considerable amounts of MPs and EDCs. Although the WWTPs removed the contaminants efficiently, the environmental risk of the effluent needs to be noted.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":"215 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-08DOI: 10.3390/toxics12050347
Jintao Li, Xuwei Li, M. Fischel, Xiaochen Lin, Shiqi Zhou, Lei Zhang, Lei Wang, Jiali Yan
{"title":"Applying Red Mud in Cadmium Contamination Remediation: A Scoping Review","authors":"Jintao Li, Xuwei Li, M. Fischel, Xiaochen Lin, Shiqi Zhou, Lei Zhang, Lei Wang, Jiali Yan","doi":"10.3390/toxics12050347","DOIUrl":"https://doi.org/10.3390/toxics12050347","url":null,"abstract":"Red mud is an industrial solid waste rarely utilized and often disposed of in landfills, resulting in resource waste and environmental pollution. However, due to its high pH and abundance of iron and aluminum oxides and hydroxides, red mud has excellent adsorption properties which can effectively remove heavy metals through ion exchange, adsorption, and precipitation. Therefore, red mud is a valuable resource rather than a waste byproduct. In recent years, red mud has been increasingly studied for its potential in wastewater treatment and soil improvement. Red mud can effectively reduce the migration and impact of heavy metals in soils and water bodies. This paper reviews the research results from using red mud to mitigate cadmium pollution in water bodies and soils, discusses the environmental risks of red mud, and proposes key research directions for the future management of red mud in cadmium-contaminated environments.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-08DOI: 10.3390/toxics12050346
Matthew V. Russell, T. Messer, D. Repert, Richard L. Smith, S. Bartelt-Hunt, D. Snow, A. P. Reed
{"title":"Influence of Four Veterinary Antibiotics on Constructed Treatment Wetland Nitrogen Transformation","authors":"Matthew V. Russell, T. Messer, D. Repert, Richard L. Smith, S. Bartelt-Hunt, D. Snow, A. P. Reed","doi":"10.3390/toxics12050346","DOIUrl":"https://doi.org/10.3390/toxics12050346","url":null,"abstract":"The use of wetlands as a treatment approach for nitrogen in runoff is a common practice in agroecosystems. However, nitrate is not the sole constituent present in agricultural runoff and other biologically active contaminants have the potential to affect nitrate removal efficiency. In this study, the impacts of the combined effects of four common veterinary antibiotics (chlortetracycline, sulfamethazine, lincomycin, monensin) on nitrate-N treatment efficiency in saturated sediments and wetlands were evaluated in a coupled microcosm/mesocosm scale experiment. Veterinary antibiotics were hypothesized to significantly impact nitrogen speciation (e.g., nitrate and ammonium) and nitrogen uptake and transformation processes (e.g., plant uptake and denitrification) within the wetland ecosystems. To test this hypothesis, the coupled study had three objectives: 1. assess veterinary antibiotic impact on nitrogen cycle processes in wetland sediments using microcosm incubations, 2. measure nitrate-N reduction in water of floating treatment wetland systems over time following the introduction of veterinary antibiotic residues, and 3. identify the fate of veterinary antibiotics in floating treatment wetlands using mesocosms. Microcosms containing added mixtures of the veterinary antibiotics had little to no effect at lower concentrations but stimulated denitrification potential rates at higher concentrations. Based on observed changes in the nitrogen loss in the microcosm experiments, floating treatment wetland mesocosms were enriched with 1000 μg L−1 of the antibiotic mixture. Rates of nitrate-N loss observed in mesocosms with the veterinary antibiotic enrichment were consistent with the microcosm experiments in that denitrification was not inhibited, even at the high dosage. In the mesocosm experiments, average nitrate-N removal rates were not found to be impacted by the veterinary antibiotics. Further, veterinary antibiotics were primarily found in the roots of the floating treatment wetland biomass, accumulating approximately 190 mg m−2 of the antibiotic mixture. These findings provide new insight into the impact that veterinary antibiotic mixtures may have on nutrient management strategies for large-scale agricultural operations and the potential for veterinary antibiotic removal in these wetlands.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":" 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ToxicsPub Date : 2024-05-07DOI: 10.3390/toxics12050339
Qibin Wu, Xinyue Gao, Yifan Lin, Caijin Wu, Jian Zhang, Mengting Chen, Jiaxin Wen, Yajiao Wu, Kun Tian, Wenqiang Bao, P. Sun, An Zhu
{"title":"Integrating Epigenetics, Proteomics, and Metabolomics to Reveal the Involvement of Wnt/β-Catenin Signaling Pathway in Oridonin-Induced Reproductive Toxicity","authors":"Qibin Wu, Xinyue Gao, Yifan Lin, Caijin Wu, Jian Zhang, Mengting Chen, Jiaxin Wen, Yajiao Wu, Kun Tian, Wenqiang Bao, P. Sun, An Zhu","doi":"10.3390/toxics12050339","DOIUrl":"https://doi.org/10.3390/toxics12050339","url":null,"abstract":"Oridonin is the primary active component in the traditional Chinese medicine Rabdosia rubescens, displaying anti-inflammatory, anti-tumor, and antibacterial effects. It is widely employed in clinical therapy for acute and chronic pharyngitis, tonsillitis, as well as bronchitis. Nevertheless, the clinical application of oridonin is significantly restricted due to its reproductive toxicity, with the exact mechanism remaining unclear. The aim of this study was to investigate the mechanism of oridonin-induced damage to HTR-8/SVneo cells. Through the integration of epigenetics, proteomics, and metabolomics methodologies, the mechanisms of oridonin-induced reproductive toxicity were discovered and confirmed through fluorescence imaging, RT-qPCR, and Western blotting. Experimental findings indicated that oridonin altered m6A levels, gene and protein expression levels, along with metabolite levels within the cells. Additionally, oridonin triggered oxidative stress and mitochondrial damage, leading to a notable decrease in WNT6, β-catenin, CLDN1, CCND1, and ZO-1 protein levels. This implied that the inhibition of the Wnt/β-catenin signaling pathway and disruption of tight junction might be attributed to the cytotoxicity induced by oridonin and mitochondrial dysfunction, ultimately resulting in damage to HTR-8/SVneo cells.","PeriodicalId":508978,"journal":{"name":"Toxics","volume":"22 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}