{"title":"Editorial: Bioconversion of insect resources for sustainability","authors":"Jun Wang, C. Cespedes-Acuna, Zhaojun Wei","doi":"10.3389/fbioe.2024.1448572","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1448572","url":null,"abstract":"","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"24 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141646357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fengtong Ji, Tianlong Li, Katherine Villa, Yue Dong
{"title":"Editorial: Micro/nanorobots in nanobiotechnology","authors":"Fengtong Ji, Tianlong Li, Katherine Villa, Yue Dong","doi":"10.3389/fbioe.2024.1453307","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1453307","url":null,"abstract":"","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"27 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141659636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuangshuang Wen, Ruina Huang, Lu Liu, Yan Zheng, Hegao Yu
{"title":"Robotic exoskeleton-assisted walking rehabilitation for stroke patients: a bibliometric and visual analysis","authors":"Shuangshuang Wen, Ruina Huang, Lu Liu, Yan Zheng, Hegao Yu","doi":"10.3389/fbioe.2024.1391322","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1391322","url":null,"abstract":"This study aimed to conduct a bibliometric analysis of the literature on exoskeleton robot assisted walking rehabilitation for stroke patients in the Web of Science Core Collection over the past decade.Retrieved literature on exoskeleton robot assisted gait training for stroke hemiplegic patients from the Web of Science Core Collection from 1 January 2014 to 31 January 2024. The search method was topic search, and the types of documents were “article, meeting abstract, review article, early access.” CiteSpace was used to analyze the search results from countries, institutions, keywords, cited references and cited authors.A total of 1,349 articles were retrieved, and 1,034 were ultimately included for visualization analysis. The annual publication volume showed an upward trend, with countries, institutions, and authors from Europe and America in a leading position. The core literature was also published by authors from European and American countries. The keywords were divided into 8 clusters: # 0 soft robotic exit, # 1 robot assisted gain training, # 2 multiple scales, # 3 magnetic rheological brake, # 4 test retest reliability, # 5 electromechanical assisted training, # 6 cerebra salary, and # 7 slow gain. The early research direction focused on the development of exoskeleton robots, verifying their reliability and feasibility. Later, the focus was on the combination of exoskeleton robot with machine learning and other technologies, rehabilitation costs, and patient quality of life.This study provides a visual display of the research status, development trends, and research hotspots, which helps researchers in this field to grasp the research hotspots and choose future research directions.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"1 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Systematic metabolic engineering of Zymomonas mobilis for β-farnesene production","authors":"Yubei Xiao, Xuemei Tan, Qiaoning He, Shihui Yang","doi":"10.3389/fbioe.2024.1392556","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1392556","url":null,"abstract":"Zymomonas mobilis is an ethanologenic bacterium that can produce hopanoids using farnesyl pyrophosphate (FPP), which can be used as the precursor by β-farnesene synthase for β-farnesene production. To explore the possibility and bottlenecks of developing Z. mobilis for β-farnesene production, five heterologous β-farnesene synthases were selected and screened, and AaBFS from Artemisia annua had the highest β-farnesene titer. Recombinant strains with AaBFS driven by the strong constitutive promoter Pgap (Pgap–AaBFS) doubled its β-farnesene production to 25.73 ± 0.31 mg/L compared to the recombinant strain with AaBFS driven by Ptet (Ptet–AaBFS), which can be further improved by overexpressing the Pgap–AaBFS construct using the strategies of multiple plasmids (41.00 ± 0.40 mg/L) or genomic multi-locus integration (48.33 ± 3.40 mg/L). The effect of cofactor NADPH balancing on β-farnesene production was also investigated, which can be improved only in zwf-overexpressing strains but not in ppnK-overexpressing strains, indicating that cofactor balancing is important and sophisticated. Furthermore, the β-farnesene titer was improved to 73.30 ± 0.71 mg/L by overexpressing dxs, ispG, and ispH. Finally, the β-farnesene production was increased to 159.70 ± 7.21 mg/L by fermentation optimization, including the C/N ratio, flask working volume, and medium/dodecane ratio, which was nearly 13-fold improved from the parental strain. This work thus not only generated a recombinant β-farnesene production Z. mobilis strain but also unraveled the bottlenecks to engineer Z. mobilis for farnesene production, which will help guide the future rational design and construction of cell factories for terpenoid production in non-model industrial microorganisms.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"6 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alessandro Bonfiglio, David Tacconi, Raoul M. Bongers, Elisabetta Farella
{"title":"Effects of IMU sensor-to-segment calibration on clinical 3D elbow joint angles estimation","authors":"Alessandro Bonfiglio, David Tacconi, Raoul M. Bongers, Elisabetta Farella","doi":"10.3389/fbioe.2024.1385750","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1385750","url":null,"abstract":"Introduction: Inertial Measurement Units (IMU) require a sensor-to-segment calibration procedure in order to compute anatomically accurate joint angles and, thereby, be employed in healthcare and rehabilitation. Research literature proposes several algorithms to address this issue. However, determining an optimal calibration procedure is challenging due to the large number of variables that affect elbow joint angle accuracy, including 3D joint axis, movement performed, complex anatomy, and notable skin artefacts. Therefore, this paper aims to compare three types of calibration techniques against an optical motion capture reference system during several movement tasks to provide recommendations on the most suitable calibration for the elbow joint.Methods: Thirteen healthy subjects were instrumented with IMU sensors and optical marker clusters. Each participant performed a series of static poses and movements to calibrate the instruments and, subsequently, performed single-plane and multi-joint tasks. The metrics used to evaluate joint angle accuracy are Range of Motion (ROM) error, Root Mean Squared Error (RMSE), and offset. We performed a three-way RM ANOVA to evaluate the effect of joint axis and movement task on three calibration techniques: N-Pose (NP), Functional Calibration (FC) and Manual Alignment (MA).Results: Despite small effect sizes in ROM Error, NP displayed the least precision among calibrations due to interquartile ranges as large as 24.6°. RMSE showed significant differences among calibrations and a large effect size where MA performed best (RMSE = 6.3°) and was comparable with FC (RMSE = 7.2°). Offset showed a large effect size in the calibration*axes interaction where FC and MA performed similarly.Conclusion: Therefore, we recommend MA as the preferred calibration method for the elbow joint due to its simplicity and ease of use. Alternatively, FC can be a valid option when the wearer is unable to hold a predetermined posture.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"37 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recovery of rare earth elements from low-grade coal fly ash using a recyclable protein biosorbent","authors":"Zohaib Hussain, Divya Dwivedi, Inchan Kwon","doi":"10.3389/fbioe.2024.1385845","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1385845","url":null,"abstract":"Rare earth elements (REEs), including those in the lanthanide series, are crucial components essential for clean energy transitions, but they originate from geographically limited regions. Exploiting new and diverse supply sources is vital to facilitating a clean energy future. Hence, we explored the recovery of REEs from coal fly ash (FA), a complex, low-grade industrial feedstock that is currently underutilized (leachate concentrations of REEs in FA are < 0.003 mol%). Herein, we demonstrated the thermo-responsive genetically encoded REE-selective elastin-like polypeptides (RELPs) as a recyclable bioengineered protein adsorbent for the selective retrieval of REEs from coal fly ash over multiple cycles. The results showed that RELPs could be efficiently separated using temperature cycling and reused with high stability, as they retained ∼95% of their initial REE binding capacity even after four cycles. Moreover, RELPs selectively recovered high-purity REEs from the simulated solution containing one representative REE in the range of 0.0001–0.005 mol%, resulting in up to a 100,000-fold increase in REE purity. This study offers a sustainable approach to diversifying REE supplies by recovering REEs from low-grade coal fly ash in industrial wastes and provides a scientific basis for the extraction of high-purity REEs for industrial purposes.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-mode adaptive control strategy for a lower limb rehabilitation robot","authors":"Xu Liang, Yuchen Yan, Shenghua Dai, Zhao Guo, Zheng Li, Shengda Liu, Tingting Su","doi":"10.3389/fbioe.2024.1392599","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1392599","url":null,"abstract":"Different patients have different rehabilitation requirements. It is essential to ensure the safety and comfort of patients at different recovery stages during rehabilitation training. This study proposes a multi-mode adaptive control method to achieve a safe and compliant rehabilitation training strategy. First, patients’ motion intention and motor ability are evaluated based on the average human–robot interaction force per task cycle. Second, three kinds of rehabilitation training modes—robot-dominant, patient-dominant, and safety-stop—are established, and the adaptive controller can dexterously switch between the three training modes. In the robot-dominant mode, based on the motion errors, the patient’s motor ability, and motion intention, the controller can adaptively adjust its assistance level and impedance parameters to help patients complete rehabilitation tasks and encourage them to actively participate. In the patient-dominant mode, the controller only adjusts the training speed. When the trajectory error is too large, the controller switches to the safety-stop mode to ensure patient safety. The stabilities of the adaptive controller under three training modes are then proven using Lyapunov theory. Finally, the effectiveness of the multi-mode adaptive controller is verified by simulation results.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"28 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiplexed detection of eight respiratory viruses based on nanozyme colorimetric microfluidic immunoassay","authors":"Feng Wu, Defeng Cai, Xueying Shi, Ping Li, Lan Ma","doi":"10.3389/fbioe.2024.1402831","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1402831","url":null,"abstract":"Pandemics caused by respiratory viruses, such as the SARS-CoV-1/2, influenza virus, and respiratory syncytial virus, have resulted in serious consequences to humans and a large number of deaths. The detection of such respiratory viruses in the early stages of infection can help control diseases by preventing the spread of viruses. However, the diversity of respiratory virus species and subtypes, their rapid antigenic mutations, and the limited viral release during the early stages of infection pose challenges to their detection. This work reports a multiplexed microfluidic immunoassay chip for simultaneous detection of eight respiratory viruses with noticeable infection population, namely, influenza A virus, influenza B virus, respiratory syncytial virus, SARS-CoV-2, human bocavirus, human metapneumovirus, adenovirus, and human parainfluenza viruses. The nanomaterial of the nanozyme (Au@Pt nanoparticles) was optimized to improve labeling efficiency and enhance the detection sensitivity significantly. Nanozyme-binding antibodies were used to detect viral proteins with a limit of detection of 0.1 pg/mL with the naked eye and a microplate reader within 40 min. Furthermore, specific antibodies were screened against the conserved proteins of each virus in the immunoassay, and the clinical sample detection showed high specificity without cross reactivity among the eight pathogens. In addition, the microfluidic chip immunoassay showed high accuracy, as compared with the RT-PCR assay for clinical sample detection, with 97.2%/94.3% positive/negative coincidence rates. This proposed approach thus provides a convenient, rapid, and sensitive method for simultaneous detection of eight respiratory viruses, which is meaningful for the early diagnosis of viral infections. Significantly, it can be widely used to detect pathogens and biomarkers by replacing only the antigen-specific antibodies.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"34 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140966460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a chemically disclosed serum-free medium for mouse pluripotent stem cells","authors":"Tomoka Katayama, Marina Takechi, Yamato Murata, Yuta Chigi, Shinpei Yamaguchi, Daiji Okamura","doi":"10.3389/fbioe.2024.1390386","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1390386","url":null,"abstract":"Mouse embryonic stem cells (mESCs) have been widely used as a model system to study the basic biology of pluripotency and to develop cell-based therapies. Traditionally, mESCs have been cultured in a medium supplemented with fetal bovine serum (FBS). However, serum with its inconsistent chemical composition has been problematic for reproducibility and for studying the role of specific components. While some serum-free media have been reported, these media contain commercial additives whose detailed components have not been disclosed. Recently, we developed a serum-free medium, DA-X medium, which can maintain a wide variety of adherent cancer lines. In this study, we modified the DA-X medium and established a novel serum-free condition for both naïve mESCs in which all components are chemically defined and disclosed (DA-X-modified medium for robust growth of pluripotent stem cells: DARP medium). The DARP medium fully supports the normal transcriptome and differentiation potential in teratoma and the establishment of mESCs from blastocysts that retain the developmental potential in all three germ layers, including germ cells in chimeric embryos. Utility of chemically defined DA-X medium for primed mouse epiblast stem cells (mEpiSCs) revealed that an optimal amount of cholesterol is required for the robust growth of naïve-state mESCs, but is dispensable for the maintenance of primed-state mEpiSCs. Thus, this study provides reliable and reproducible culture methods to investigate the role of specific components regulating self-renewal and pluripotency in a wide range of pluripotent states.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junya Kato, Tatsuya Fujii, Setsu Kato, K. Wada, Masahiro Watanabe, Yusuke Nakamichi, Yoshiteru Aoi, Tomotake Morita, K. Murakami, Yutaka Nakashimada
{"title":"Genetic engineering of a thermophilic acetogen, Moorella thermoacetica Y72, to enable acetoin production","authors":"Junya Kato, Tatsuya Fujii, Setsu Kato, K. Wada, Masahiro Watanabe, Yusuke Nakamichi, Yoshiteru Aoi, Tomotake Morita, K. Murakami, Yutaka Nakashimada","doi":"10.3389/fbioe.2024.1398467","DOIUrl":"https://doi.org/10.3389/fbioe.2024.1398467","url":null,"abstract":"Acetogens are among the key microorganisms involved in the bioproduction of commodity chemicals from diverse carbon resources, such as biomass and waste gas. Thermophilic acetogens are particularly attractive because fermentation at higher temperatures offers multiple advantages. However, the main target product is acetic acid. Therefore, it is necessary to reshape metabolism using genetic engineering to produce the desired chemicals with varied carbon lengths. Although such metabolic engineering has been hampered by the difficulty involved in genetic modification, a model thermophilic acetogen, M. thermoacetica ATCC 39073, is the case with a few successful cases of C2 and C3 compound production, other than acetate. This brief report attempts to expand the product spectrum to include C4 compounds by using strain Y72 of Moorella thermoacetica. Strain Y72 is a strain related to the type strain ATCC 39073 and has been reported to have a less stringent restriction-modification system, which could alleviate the cumbersome transformation process. A simplified procedure successfully introduced a key enzyme for acetoin (a C4 chemical) production, and the resulting strains produced acetoin from sugars and gaseous substrates. The culture profile revealed varied acetoin yields depending on the type of substrate and culture conditions, implying the need for further engineering in the future. Thus, the use of a user-friendly chassis could benefit the genetic engineering of M. thermoacetica.","PeriodicalId":508781,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"128 28","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140977430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}