{"title":"Synthesis of Scalable Single Length Cycle, Single Attractor Cellular Automata in Linear Time","authors":"B. Chakraborty, M. Dalui, B. Sikdar","doi":"10.25088/complexsystems.30.3.415","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.415","url":null,"abstract":"This paper proposes the synthesis of single length cycle, single attractor cellular automata (SACAs) for arbitrary length. The n-cell single length cycle, single attractor cellular automaton (SACA), synthesized in linear time O(n), generates a pattern and finally settles to a point state called the single length cycle attractor state. An analytical framework is developed around the graph-based tool referred to as the next state transition diagram to explore the properties of SACA rules for three-neighborhood, one-dimensional cellular automata. This enables synthesis of an (n+1)-cell SACA from the available configuration of an n-cell SACA in constant time and an (n+m)-cell SACA from the available configuration of n-cell and m-cell SACAs also in constant time.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80452367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Studies of COVID-19 Outbreak Control Using Agent-Based Modeling","authors":"Shaoping Xiao, Ruicheng Liu","doi":"10.25088/complexsystems.30.3.297","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.297","url":null,"abstract":"An agent-based model was developed to study outbreaks and outbreak control for COVID-19, mainly in urban communities. Rules for people’s interactions and virus infectiousness were derived based on previous sociology studies and recently published data-driven analyses of COVID-19 epidemics. The calculated basic reproduction number of epidemics from the developed model coincided with reported values. There were three control measures considered in this paper: social distancing, self-quarantine and community quarantine. Each control measure was assessed individually at first. Later on, an artificial neural network was used to study the effects of different combinations of control measures. To help quantify the impacts of self-quarantine and community quarantine on outbreak control, both were scaled respectively. The results showed that self-quarantine was more effective than the others, but any individual control measure was ineffective in controlling outbreaks in urban communities. The results also showed that a high level of self-quarantine and general community quarantine, assisted with social distancing, would be recommended for outbreak control.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79860914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What Keeps a Vibrant Population Together?","authors":"Jayati Deshmukh, S. Srinivasa, Sridhar Mandyam","doi":"10.25088/complexsystems.30.3.347","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.347","url":null,"abstract":"Managing diversity is a challenging problem for organizations and governments. Diversity in a population may be of two kinds—acquired and innate. The former refers to diversity acquired by pre-existing social or organizational environments, attracting employees or immigrants because of their wealth and opportunities. Innate diversity, on the other hand, refers to a collection of pre-existing communities having to interact with one another and to build an overarching social or organizational identity. While acquired diversity has a prior element of common identity, innate diversity needs to build a common identity from a number of disparate regional or local identities. Diversity in any large population may have different extents of acquired and innate elements. In this paper, innate and acquired diversity are modeled in terms of two factors, namely: insularity and homophily, respectively. Insularity is the tendency of agents to act cooperatively only with others from the same community, which is often the primary challenge of innate diversity; while homophily is the tendency of agents to prefer members from their own community to start new social or business connections, which is often the primary challenge in acquired diversity. The emergence of network structure is studied when insularity and homophily are varied. In order to promote cooperation in a diverse population, the role played by a subset of agents called “global” agents who are not affected by homophily and insularity considerations is also studied. Simulation results show several interesting emergent properties. While the global agents are shown to acquire high betweenness, they are by no means the wealthiest or the most powerful in the network. However, the presence of global agents is important for the regional agents whose own wealth prospects increase because of their interaction with global agents.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80588174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Control Approach to Guide Nonpharmaceutical Interventions in the Treatment of COVID-19 Disease Using a SEIHRD Dynamical Model","authors":"F. Pazos, F. Felicioni","doi":"10.25088/complexsystems.30.3.323","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.323","url":null,"abstract":"The recent worldwide epidemic of COVID-19 disease, for which there are no medications to cure it and the vaccination is still at an early stage, led to the adoption of public health measures by governments and populations in most of the affected countries to avoid the contagion and its spread. These measures are known as nonpharmaceutical interventions (NPIs), and their implementation clearly produces social unrest as well as greatly affects the economy. Frequently, NPIs are implemented with an intensity quantified in an ad hoc manner. Control theory offers a worthwhile tool for determining the optimal intensity of the NPIs in order to avoid the collapse of the healthcare system while keeping them as low as possible, yielding concrete guidance to policymakers. A simple controller, which generates a control law that is easy to calculate and to implement is proposed. This controller is robust to large parametric uncertainties in the model used and to some level of noncompliance with the NPIs.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84776439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cryptographic Puzzles and Complex Systems","authors":"Rade Vuckovac","doi":"10.25088/complexsystems.30.3.375","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.375","url":null,"abstract":"A puzzle lies behind password authentication (PA) and blockchain proof of work (PoW). A cryptographic hash function is commonly used to implement them. The potential problem with secure hash functions is their complexity and rigidity. We explore the use of complex systems constructs such as a cellular automaton (CA) to provide puzzle functionality. The analysis shows that computational irreducibility and sensitivity to initial state phenomena are enough to create simple puzzle systems that can be used for PA and PoW. Moreover, we present puzzle schemata using CA and n-body problems.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83933788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatial Signatures of Road Network Growth for Different Levels of Global Planning","authors":"M. Cirunay, R. Batac","doi":"10.25088/complexsystems.30.3.273","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.273","url":null,"abstract":"We compare the statistical distributions of the geometrical properties of road networks for two representative datasets under different levels of planning: the cities comprising Metropolitan Manila show the conditions under bottom-up self-organized growth, while Brasilia and the Australian Capital Territory centered at Canberra represent the case of strict top-down planning. The distribution of segmented areas of the cities shows a dual power-law behavior, with the larger areas following the ∼1.9 scaling exponent observed in other cities, while the smaller areas show a lower exponent of ∼0.5, believed to be due to practical considerations. While all cities are found to favor the formation of straight road segments, the planned city roads have a preponderance of sinuous roads, with sinuosities approaching π. A simple model based on a nearest-neighbor directed branching coupled with sectional grid formations is proposed to capture the nontrivial statistical features observed.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75567472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Yacoubi, T. Plénet, S. Dridi, F. Bagnoli, L. Lefévre, C. Raïevsky
{"title":"Some Control and Observation Issues in Cellular Automata","authors":"S. Yacoubi, T. Plénet, S. Dridi, F. Bagnoli, L. Lefévre, C. Raïevsky","doi":"10.25088/complexsystems.30.3.391","DOIUrl":"https://doi.org/10.25088/complexsystems.30.3.391","url":null,"abstract":"This review article focuses on studying problems of observability and controllability of cellular automata (CAs) considered in the context of control theory, an important feature of which is the adoption of a state-space model. Our work first consists in generalizing the obtained results to systems described by CAs considered as the discrete counterpart of partial differential equations, and in exploring possible approaches to prove controllability and observability. After having introduced the notion of control and observation in cellular automata models, in a similar way to the case of discrete-time distributed parameter systems, we investigate these key concepts of control theory in the case of complex systems. For the controllability issue, the Boolean class is particularly studied and applied to the regional case, while the observability is approached in the general case and related to the reconstructibility problem for linear or nonlinear CAs.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81300924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Macroscopic fundamental flow diagrams of a spiritually motivated crowd","authors":"H. Gayathri, P. Karthika, Ashish Verma","doi":"10.1142/s0219525921500028","DOIUrl":"https://doi.org/10.1142/s0219525921500028","url":null,"abstract":"","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45455856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen-Juan Xu, Chen-Yang Zhong, Hui-Fen Ye, Rongda Chen, T. Qiu, F. Ren, Li-Xin Zhong
{"title":"Risk Awareness to epidemic Information and Self-Restricted Travel Behavior on Contagion","authors":"Wen-Juan Xu, Chen-Yang Zhong, Hui-Fen Ye, Rongda Chen, T. Qiu, F. Ren, Li-Xin Zhong","doi":"10.1142/s0219525921500016","DOIUrl":"https://doi.org/10.1142/s0219525921500016","url":null,"abstract":"By incorporating delayed epidemic information and self-restricted travel behavior into the SIS model, we have investigated the coupled effects of timely and accurate epidemic information and people’s sensitivity to the epidemic information on contagion. In the population with only local random movement, whether the epidemic information is delayed or not has no effect on the spread of the epidemic. People’s high sensitivity to the epidemic information leads to their risk aversion behavior and the spread of the epidemic is suppressed. In the population with only global person-to-person movement, timely and accurate epidemic information helps an individual cut off the connections with the infected in time and the epidemic is brought under control in no time. A delay in the epidemic information leads to an individual’s misjudgment of who has been infected and who has not, which in turn leads to rapid progress and a higher peak of the epidemic. In the population with coexistence of local and global movement, timely and accurate epidemic information and people’s high sensitivity to the epidemic information play an important role in curbing the epidemic. A theoretical analysis indicates that people’s misjudgment caused by the delayed epidemic information leads to a higher encounter probability between the susceptible and the infected and people’s self-restricted travel behavior helps reduce such an encounter probability. A functional relation between the ratio of infected individuals and the susceptible-infected encounter probability has been found.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76447214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Palchykov, M. Krasnytska, O. Mryglod, Y. Holovatch
{"title":"Network of scientific concepts: empirical analysis and modeling","authors":"V. Palchykov, M. Krasnytska, O. Mryglod, Y. Holovatch","doi":"10.1142/S0219525921400014","DOIUrl":"https://doi.org/10.1142/S0219525921400014","url":null,"abstract":"Concepts in a certain domain of science are linked via intrinsic connections reflecting the structure of knowledge. To get a qualitative insight and a quantitative description of this structure, we perform empirical analysis and modeling of the network of scientific concepts in the domain of physics. To this end we use a collection of manuscripts submitted to the e-print repository arXiv and the vocabulary of scientific concepts collected via the ScienceWISE.info platform and construct a network of scientific concepts based on their co-occurrences in publications. The resulting complex network possesses a number of specific features (high node density, dissortativity, structural correlations, skewed node degree distribution) that can not be understood as a result of simple growth by several commonly used network models. We show that the model based on a simultaneous account of two factors, growth by blocks and preferential selection, gives an explanation of empirically observed properties of the concepts network.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90866575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}