S. Yacoubi, T. Plénet, S. Dridi, F. Bagnoli, L. Lefévre, C. Raïevsky
{"title":"Some Control and Observation Issues in Cellular Automata","authors":"S. Yacoubi, T. Plénet, S. Dridi, F. Bagnoli, L. Lefévre, C. Raïevsky","doi":"10.25088/complexsystems.30.3.391","DOIUrl":null,"url":null,"abstract":"This review article focuses on studying problems of observability and controllability of cellular automata (CAs) considered in the context of control theory, an important feature of which is the adoption of a state-space model. Our work first consists in generalizing the obtained results to systems described by CAs considered as the discrete counterpart of partial differential equations, and in exploring possible approaches to prove controllability and observability. After having introduced the notion of control and observation in cellular automata models, in a similar way to the case of discrete-time distributed parameter systems, we investigate these key concepts of control theory in the case of complex systems. For the controllability issue, the Boolean class is particularly studied and applied to the regional case, while the observability is approached in the general case and related to the reconstructibility problem for linear or nonlinear CAs.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25088/complexsystems.30.3.391","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
This review article focuses on studying problems of observability and controllability of cellular automata (CAs) considered in the context of control theory, an important feature of which is the adoption of a state-space model. Our work first consists in generalizing the obtained results to systems described by CAs considered as the discrete counterpart of partial differential equations, and in exploring possible approaches to prove controllability and observability. After having introduced the notion of control and observation in cellular automata models, in a similar way to the case of discrete-time distributed parameter systems, we investigate these key concepts of control theory in the case of complex systems. For the controllability issue, the Boolean class is particularly studied and applied to the regional case, while the observability is approached in the general case and related to the reconstructibility problem for linear or nonlinear CAs.
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.