NanomaterialsPub Date : 2024-06-02DOI: 10.3390/nano14110967
Ouyang Jing, Yonghui Peng, Wentao Zhou, Xianfeng Liang, Gang Wang, Qi Zhang, Bo Yuan
{"title":"The Role of Oxygen Vacancies in Phase Transition and the Optical Absorption Properties within Nanocrystalline ZrO2","authors":"Ouyang Jing, Yonghui Peng, Wentao Zhou, Xianfeng Liang, Gang Wang, Qi Zhang, Bo Yuan","doi":"10.3390/nano14110967","DOIUrl":"https://doi.org/10.3390/nano14110967","url":null,"abstract":"Zirconia (ZrO2) nanoparticles were synthesized using a solvothermal method under varying synthesis conditions, namely acidic, neutral, and alkaline. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were leveraged to investigate the phase evolution and topographical features in detail. The resulting crystal phase structures and grain sizes exhibited substantial variation based on these conditions. Notably, the acidic condition fostered a monoclinic phase in ZrO2, while the alkaline condition yielded a combination of tetragonal and monoclinic phases. In contrast, ZrO2 obtained under neutral conditions demonstrated a refinement in grain sizes, constrained within a 1 nm scale upon an 800 °C thermal treatment. This was accompanied by an important transformation from a monoclinic phase to tetragonal phase in the ZrO2. Furthermore, a rigorous examination of XPS data and a UV-visible spectrometer (UV-vis) analysis revealed the significant role of oxygen vacancies in phase stabilization. The notable emergence of new energy bands in ZrO2, in stark contrast to the intrinsic bands observed in a pure monoclinic sample, are attributed to these oxygen vacancies. This research offers valuable insights into the novel energy bands, phase stability, and optical absorption properties influenced by oxygen vacancies in ZrO2. Moreover, it proposes an innovative energy level model for zirconia, underpinning its applicability in diverse technological areas.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"24 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of Few-Layered MoS2 by One-Pot Hydrothermal Method for High Supercapacitor Performance","authors":"Qingling Jia, Qi Wang, Lingshuai Meng, Yujie Zhao, Jing Xu, Meng Sun, Zijian Li, Han Li, Huiyu Chen, Yongxing Zhang","doi":"10.3390/nano14110968","DOIUrl":"https://doi.org/10.3390/nano14110968","url":null,"abstract":"Molybdenum disulfide (MoS2), a typical layered material, has important applications in various fields, such as optoelectronics, catalysis, electronic devices, sensors, and supercapacitors. Extensive research has been carried out on few-layered MoS2 in the field of electrochemistry due to its large specific surface area, abundant active sites and short electron transport path. However, the preparation of few-layered MoS2 is a significant challenge. This work presents a simple one-pot hydrothermal method for synthesizing few-layered MoS2. Furthermore, it investigates the exfoliation effect of different amounts of sodium borohydride (NaBH4) as a stripping agent on the layer number of MoS2. Na+ ions, as alkali metal ions, can intercalate between layers to achieve the purpose of exfoliating MoS2. Additionally, NaBH4 exhibits reducibility, which can effectively promote the formation of the metallic phase of MoS2. Few-layered MoS2, as an electrode for supercapacitor, possesses a wide potential window of 0.9 V, and a high specific capacitance of 150 F g−1 at 1 A g−1. This work provides a facile method to prepare few-layered two-dimensional materials for high electrochemical performance.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"50 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-06-02DOI: 10.3390/nano14110969
Meng Zhang, Tianyi Zhang, Hui Tang, L. Liang, Yongyi Chen, Li Qin, Yue Song, Yuxin Lei, P. Jia, Yubing Wang, Cheng Qiu, Yuntao Cao, Yongqiang Ning, Lijun Wang
{"title":"Low-Polarization, Broad-Spectrum Semiconductor Optical Amplifiers","authors":"Meng Zhang, Tianyi Zhang, Hui Tang, L. Liang, Yongyi Chen, Li Qin, Yue Song, Yuxin Lei, P. Jia, Yubing Wang, Cheng Qiu, Yuntao Cao, Yongqiang Ning, Lijun Wang","doi":"10.3390/nano14110969","DOIUrl":"https://doi.org/10.3390/nano14110969","url":null,"abstract":"Polarization-insensitive semiconductor optical amplifiers (SOAs) in all-optical networks can improve the signal-light quality and transmission rate. Herein, to reduce the gain sensitivity to polarization, a multi-quantum-well SOA in the 1550 nm band is designed, simulated, and developed. The active region mainly comprises the quaternary compound InGaAlAs, as differences in the potential barriers and wells of the components cause lattice mismatch. Consequently, a strained quantum well is generated, providing the SOA with gain insensitivity to the polarization state of light. In simulations, the SOA with ridge widths of 4 µm, 5 µm, and 6 µm is investigated. A 3 dB gain bandwidth of >140 nm is achieved with a 4 µm ridge width, whereas a 6 µm ridge width provides more output power and gain. The saturated output power is 150 mW (21.76 dB gain) at an input power of 0 dBm but increases to 233 mW (13.67 dB gain) at an input power of 10 dBm. The polarization sensitivity is <3 dBm at −20 dBm. This design, which achieves low polarization sensitivity, a wide gain bandwidth, and high gain, will be applicable in a wide range of fields following further optimization.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"42 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-06-02DOI: 10.3390/nano14110966
Kunpeng Tang, Yinong Li, Yingzhi Chen, Weili Cui, Zhiwei Lin, Yifan Zhang, Lei Shi
{"title":"Encapsulation and Evolution of Polyynes Inside Single-Walled Carbon Nanotubes","authors":"Kunpeng Tang, Yinong Li, Yingzhi Chen, Weili Cui, Zhiwei Lin, Yifan Zhang, Lei Shi","doi":"10.3390/nano14110966","DOIUrl":"https://doi.org/10.3390/nano14110966","url":null,"abstract":"Polyyne is an sp-hybridized linear carbon chain (LCC) with alternating single and triple carbon–carbon bonds. Polyyne is very reactive; thus, its structure can be easily damaged through a cross-linking reaction between the molecules. The longer the polyyne is, the more unstable it becomes. Therefore, it is difficult to directly synthesize long polyynes in a solvent. The encapsulation of polyynes inside carbon nanotubes not only stabilizes the molecules to avoid cross-linking reactions, but also allows a restriction reaction to occur solely at the ends of the polyynes, resulting in long LCCs. Here, by controlling the diameter of single-walled carbon nanotubes (SWCNTs), polyynes were filled with high yield below room temperature. Subsequent annealing of the filled samples promoted the reaction between the polyynes, leading to the formation of long LCCs. More importantly, single chiral (6,5) SWCNTs with high purity were used for the successful encapsulation of polyynes for the first time, and LCCs were synthesized by coalescing the polyynes in the (6,5) SWCNTs. This method holds promise for further exploration of the synthesis of property-tailored LCCs through encapsulation inside different chiral SWCNTs.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"47 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141274070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-06-02DOI: 10.3390/nano14110965
Melorina Dolafi Rezaee, Biplav Dahal, John Watt, Mahir Abrar, Deidra R. Hodges, Wenzhi Li
{"title":"Structural, Electrical, and Optical Properties of Single-Walled Carbon Nanotubes Synthesized through Floating Catalyst Chemical Vapor Deposition","authors":"Melorina Dolafi Rezaee, Biplav Dahal, John Watt, Mahir Abrar, Deidra R. Hodges, Wenzhi Li","doi":"10.3390/nano14110965","DOIUrl":"https://doi.org/10.3390/nano14110965","url":null,"abstract":"Single-walled carbon nanotube (SWCNT) thin films were synthesized by using a floating catalyst chemical vapor deposition (FCCVD) method with a low flow rate (200 sccm) of mixed gases (Ar and H2). SWCNT thin films with different thicknesses can be prepared by controlling the collection time of the SWCNTs on membrane filters. Transmission electron microscopy (TEM) showed that the SWCNTs formed bundles and that they had an average diameter of 1.46 nm. The Raman spectra of the SWCNT films suggested that the synthesized SWCNTs were very well crystallized. Although the electrical properties of SWCNTs have been widely studied so far, the Hall effect of SWCNTs has not been fully studied to explore the electrical characteristics of SWCNT thin films. In this research, Hall effect measurements have been performed to investigate the important electrical characteristics of SWCNTs, such as their carrier mobility, carrier density, Hall coefficient, conductivity, and sheet resistance. The samples with transmittance between 95 and 43% showed a high carrier density of 1021–1023 cm−3. The SWCNTs were also treated using Brønsted acids (HCl, HNO3, H2SO4) to enhance their electrical properties. After the acid treatments, the samples maintained their p-type nature. The carrier mobility and conductivity increased, and the sheet resistance decreased for all treated samples. The highest mobility of 1.5 cm2/Vs was obtained with the sulfuric acid treatment at 80 °C, while the highest conductivity (30,720 S/m) and lowest sheet resistance (43 ohm/square) were achieved with the nitric acid treatment at room temperature. Different functional groups were identified in our synthesized SWCNTs before and after the acid treatments using Fourier-Transform Infrared Spectroscopy (FTIR).","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"13 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141273172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-06-01DOI: 10.3390/nano14110963
Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li, Chuanxiao Xiao
{"title":"Influence of Hole Transport Layers on Buried Interface in Wide-Bandgap Perovskite Phase Segregation","authors":"Fangfang Cao, Liming Du, Yongjie Jiang, Yangyang Gou, Xirui Liu, Haodong Wu, Junchuan Zhang, Zhiheng Qiu, Can Li, Jichun Ye, Zhen Li, Chuanxiao Xiao","doi":"10.3390/nano14110963","DOIUrl":"https://doi.org/10.3390/nano14110963","url":null,"abstract":"Light-induced phase segregation, particularly when incorporating bromine to widen the bandgap, presents significant challenges to the stability and commercialization of perovskite solar cells. This study explores the influence of hole transport layers, specifically poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA) and [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz), on the dynamics of phase segregation. Through detailed characterization of the buried interface, we demonstrate that Me-4PACz enhances perovskite photostability, surpassing the performance of PTAA. Nanoscale analyses using in situ Kelvin probe force microscopy and quantitative nanomechanical mapping techniques elucidate defect distribution at the buried interface during phase segregation, highlighting the critical role of substrate wettability in perovskite growth and interface integrity. The integration of these characterization techniques provides a thorough understanding of the impact of the buried bottom interface on perovskite growth and phase segregation.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"2 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-06-01DOI: 10.3390/nano14110962
K. Tamersit, A. Kouzou, José Rodríguez, Mohamed Abdelrahem
{"title":"Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics","authors":"K. Tamersit, A. Kouzou, José Rodríguez, Mohamed Abdelrahem","doi":"10.3390/nano14110962","DOIUrl":"https://doi.org/10.3390/nano14110962","url":null,"abstract":"This paper investigates the performance of vacuum gate dielectric doping-free carbon nanotube/nanoribbon field-effect transistors (VGD-DL CNT/GNRFETs) via computational analysis employing a quantum simulation approach. The methodology integrates the self-consistent solution of the Poisson solver with the mode space non-equilibrium Green’s function (NEGF) in the ballistic limit. Adopting the vacuum gate dielectric (VGD) paradigm ensures radiation-hardened functionality while avoiding radiation-induced trapped charge mechanisms, while the doping-free paradigm facilitates fabrication flexibility by avoiding the realization of a sharp doping gradient in the nanoscale regime. Electrostatic doping of the nanodevices is achieved via source and drain doping gates. The simulations encompass MOSFET and tunnel FET (TFET) modes. The numerical investigation comprehensively examines potential distribution, transfer characteristics, subthreshold swing, leakage current, on-state current, current ratio, and scaling capability. Results demonstrate the robustness of vacuum nanodevices for high-performance, radiation-hardened switching applications. Furthermore, a proposal for extrinsic enhancement via doping gate voltage adjustment to optimize band diagrams and improve switching performance at ultra-scaled regimes is successfully presented. These findings underscore the potential of vacuum gate dielectric carbon-based nanotransistors for ultrascaled, high-performance, energy-efficient, and radiation-immune nanoelectronics.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"54 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photonic Nanochains for Continuous Glucose Monitoring in Physiological Environment","authors":"Gongpu Shi, Luying Si, Jinyang Cai, Hao Jiang, Yun Liu, Wei Luo, Huiru Ma, Jianguo Guan","doi":"10.3390/nano14110964","DOIUrl":"https://doi.org/10.3390/nano14110964","url":null,"abstract":"Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing immense potential in CGM systems. However, the developed PNCs cannot disperse in physiological environment at the pH of 7.4 because of their poor hydrophilicity. In this study, we report a new kind of PNCs that can continuously and reversibly detect the concentration of glucose (Cg) in physiological environment at the pH of 7.4. Polyacrylic acid (PAA) added to the preparation of PNCs forms hydrogen bonds with polyvinylpyrrolidone (PVP) in Fe3O4@PVP colloidal nanoparticles and the hydrophilic monomer N-2-hydroxyethyl acrylamide (HEAAm), which increases the content of PHEAAm in the polymer shell of prepared PNCs. Moreover, 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA), with a relatively low pKa value, is used as the glucose-sensing monomer to further improve the hydrophilicity and glucose-sensing performances of PNCs. The obtained Fe3O4@(PVP-PAA)@poly(AFPBA-co-HEAAm) PNCs disperse in artificial serum and change color from yellow-green to red when Cg increases from 3.9 mM to 11.4 mM, showing application potential for straightforward CGM.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"61 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-31DOI: 10.3390/nano14070616
Mohammad Nezam Uddin Chy, Md. Arafat Rahman, Jin-Hyuk Kim, Nirjhor Barua, Wasif Abu Dujana
{"title":"MXene as Promising Anode Material for High-Performance Lithium-Ion Batteries: A Comprehensive Review","authors":"Mohammad Nezam Uddin Chy, Md. Arafat Rahman, Jin-Hyuk Kim, Nirjhor Barua, Wasif Abu Dujana","doi":"10.3390/nano14070616","DOIUrl":"https://doi.org/10.3390/nano14070616","url":null,"abstract":"Broad adoption has already been started of MXene materials in various energy storage technologies, such as super-capacitors and batteries, due to the increasing versatility of the preparation methods, as well as the ongoing discovery of new members. The essential requirements for an excellent anode material for lithium-ion batteries (LIBs) are high safety, minimal volume expansion during the lithiation/de-lithiation process, high cyclic stability, and high Li+ storage capability. However, most of the anode materials for LIBs, such as graphite, SnO2, Si, Al, and Li4Ti5O12, have at least one issue. Hence, creating novel anode materials continues to be difficult. To date, a few MXenes have been investigated experimentally as anodes of LIBs due to their distinct active voltage windows, large power capabilities, and longer cyclic life. The objective of this review paper is to provide an overview of the synthesis and characterization characteristics of the MXenes as anode materials of LIBs, including their discharge/charge capacity, rate performance, and cycle ability. In addition, a summary of the potential outlook for developments of these materials as anodes is provided.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"23 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140359920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NanomaterialsPub Date : 2024-03-31DOI: 10.3390/nano14070615
John Keogh, Patcharaporn Inrirai, N. Artioli, H. Manyar
{"title":"Nanostructured Solid/Liquid Acid Catalysts for Glycerol Esterification: The Key to Convert Liability into Assets","authors":"John Keogh, Patcharaporn Inrirai, N. Artioli, H. Manyar","doi":"10.3390/nano14070615","DOIUrl":"https://doi.org/10.3390/nano14070615","url":null,"abstract":"Owing to the growing concerns about the dwindling fossil fuel reserves, increasing energy demand, and climate emergency, it is imperative to develop and deploy sustainable energy technologies to ensure future energy supply and to transition to the net-zero world. In this context, there is great potential in the biorefinery concept for supplying drop in biofuels in the form of biodiesel. Biodiesel as a fuel can certainly bridge the gap where electrification or the use of hydrogen is not feasible, for instance, in heavy vehicles and in the farm and marine transportation sectors. However, the biodiesel industry also generates a large amount of crude glycerol as the by-product. Due to the presence of several impurities, crude glycerol may not be a suitable feedstock for all high-value products derived from glycerol, but it fits well with glycerol esterification for producing glycerol acetins, which have numerous applications. This review critically looks at the processes using nanostructured solid/liquid acid catalysts for glycerol esterification, including the economic viability of the scale-up. The homogeneous catalysts reviewed herein include mineral acids and Brønsted acidic ionic liquids, such as SO3H-functionalized and heteropoly acid based ionic liquids. The heterogeneous catalysts reviewed herein include solid acid catalysts such as metal oxides, ion-exchange resins, zeolites, and supported heteropoly acid-based catalysts. Furthermore, the techno-economic analysis studies have shown the process to be highly profitable, confirming the viability of glycerol esterification as a potential tool for economic value addition to the biorefinery industry.","PeriodicalId":508599,"journal":{"name":"Nanomaterials","volume":"11 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140361280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}