{"title":"Multi-feature fusion dehazing based on CycleGAN","authors":"Jingpin Wang, Yuan Ge, Jie Zhao, Chao Han","doi":"10.3233/aic-230227","DOIUrl":"https://doi.org/10.3233/aic-230227","url":null,"abstract":"Under the foggy environment, lane line images are obscured by haze, which leads to lower detection accuracy, higher false detection of lane lines. To address the above problems, a multi-layer feature fusion dehazing network based on CycleGAN architecture is proposed. Firstly, the foggy image is enhanced to remove the fog in the image, and then the lane line detection network is used for detection. For the dehazing network, a multi-layer feature fusion module is used in the generator to fuse the features of different coding layers of U-Net to enhance the network’s recovery of information such as details and edges, and a frequency domain channel attention mechanism is added at the key nodes of the network to enhance the network’s attention to different fog concentrations. At the same time, to improve the discriminant effect of the discriminator, the discriminator is extended to a global and local discriminator. The experimental results show that the dehaze effect on Reside and other test data sets is better than the comparison method. The peak signal-to-noise ratio is improved by 2.26 dB compared to the highest GCA-Net algorithm. According to the lane detection of fog images, it is found that the proposed network improves the accuracy of lane detection on foggy days.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"73 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatio-temporal deep learning framework for pedestrian intention prediction in urban traffic scenes","authors":"Monika , Pardeep Singh, Satish Chand","doi":"10.3233/aic-230053","DOIUrl":"https://doi.org/10.3233/aic-230053","url":null,"abstract":"Pedestrian intent prediction is an essential task for ensuring the safety of pedestrians and vehicles on the road. This task involves predicting whether a pedestrian intends to cross a road or not based on their behavior and surrounding environment. Previous studies have explored feature-based machine learning and vision-based deep learning models for this task but these methods have limitations in capturing the global spatio-temporal context and fusing different features of data effectively. To address these issues, we propose a novel hybrid framework HSTGCN for pedestrian intent prediction that combines spatio-temporal graph convolutional neural networks (STGCN) and long short-term memory (LSTM) networks. The proposed framework utilizes the strengths of both models by fusing multiple features, including skeleton pose, trajectory, height, orientation, and ego-vehicle speed, to predict their intentions accurately. The framework’s performance have been evaluated on the JAAD benchmark dataset and the results show that it outperforms the state-of-the-art methods. The proposed framework has potential applications in developing intelligent transportation systems, autonomous vehicles, and pedestrian safety technologies. The utilization of multiple features can significantly improve the performance of the pedestrian intent prediction task.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"32 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Open-world object detection: A solution based on reselection mechanism and feature disentanglement","authors":"Tian Lin, Li Hua, Li Linxuan, Bai Chuanao","doi":"10.3233/aic-230270","DOIUrl":"https://doi.org/10.3233/aic-230270","url":null,"abstract":"Traditional object detection algorithms operate within a closed set, where the training data may not cover all real-world objects. Therefore, the issue of open-world object detection has attracted significant attention. Open-world object detection faces two major challenges: “neglecting unknown objects” and “misclassifying unknown objects as known ones.” In our study, we address these challenges by utilizing the Region Proposal Network (RPN) outputs to identify potential unknown objects with high object scores that do not overlap with ground truth annotations. We introduce the reselection mechanism, which separates unknown objects from the background. Subsequently, we employ the simulated annealing algorithm to disentangle features of unknown and known classes, guiding the detector’s learning process. Our method has improved on multiple evaluation metrics such as U-mAP, U-recall, and UDP, greatly alleviating the challenges faced by open world object detection.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"17 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya Nepal, Wei Liu
{"title":"Token-modification adversarial attacks for natural language processing: A survey","authors":"Tom Roth, Yansong Gao, Alsharif Abuadbba, Surya Nepal, Wei Liu","doi":"10.3233/aic-230279","DOIUrl":"https://doi.org/10.3233/aic-230279","url":null,"abstract":"Many adversarial attacks target natural language processing systems, most of which succeed through modifying the individual tokens of a document. Despite the apparent uniqueness of each of these attacks, fundamentally they are simply a distinct configuration of four components: a goal function, allowable transformations, a search method, and constraints. In this survey, we systematically present the different components used throughout the literature, using an attack-independent framework which allows for easy comparison and categorisation of components. Our work aims to serve as a comprehensive guide for newcomers to the field and to spark targeted research into refining the individual attack components.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"17 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MantaRay-ProM: An efficient process model discovery algorithm","authors":"Shikha Gupta, Sonia Deshmukh, Naveen Kumar","doi":"10.3233/aic-220219","DOIUrl":"https://doi.org/10.3233/aic-220219","url":null,"abstract":"Discovering the business process model from an organisation’s records of its operational processes is an active area of research in process mining. The discovered model may be used either during a new system rollout or to improve an existing system. In this paper, we present a process model discovery approach based on the recently proposed bio-inspired Manta Ray Foraging Optimization algorithm (MRFO). Since MRFO is designed to solve real-valued optimization problems, we adapted a binary version of MRFO to suit the domain of process mining. The proposed approach is compared with state-of-the-art process discovery algorithms on several synthetic and real-life event logs. The results show that compared to other algorithms, the proposed approach exhibits faster convergence and yields superior quality process models.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"41 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140799793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Information extraction tool text2alm: From narratives to action language system descriptions and query answering","authors":"Yuliya Lierler, Gang Ling, Craig Olson","doi":"10.3233/aic-220194","DOIUrl":"https://doi.org/10.3233/aic-220194","url":null,"abstract":"In this work we design an information extraction tool text2alm capable of narrative understanding with a focus on action verbs. This tool uses an action language ALM to perform inferences on complex interactions of events described in narratives. The methodology used to implement the text2alm system was originally outlined by Lierler, Inclezan, and Gelfond (In IWCS 2017 – 12th International Conference on Computational Semantics – Short Papers (2017)) via a manual process of converting a narrative to an ALM model. We refine that theoretical methodology and utilize it in design of the text2alm system. This system relies on a conglomeration of resources and techniques from two distinct fields of artificial intelligence, namely, (i) knowledge representation and reasoning and (ii) natural language processing. The effectiveness of system text2alm is measured by its ability to correctly answer questions from the bAbI tasks published by Facebook Research in 2015. This tool matched or exceeded the performance of state-of-the-art machine learning methods in six of the seven tested tasks. We also illustrate that the text2alm approach generalizes to a broader spectrum of narratives. On the path to creating system text2alm, a semantic role labeler text2drs was designed. Its unique feature is the use of the elements of the fine grained linguistic ontology VerbNet as semantic roles/labels in annotating considered text. This paper provides an accurate account on the details behind the text2alm and text2drs systems.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"23 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IMATSA – an improved and adaptive intelligent optimization algorithm based on tunicate swarm algorithm","authors":"Yan Chen, Weizhen Dong, Xiaochun Hu","doi":"10.3233/aic-220093","DOIUrl":"https://doi.org/10.3233/aic-220093","url":null,"abstract":"Swarm intelligence optimization algorithm has been proved to perform well in the field of parameter optimization. In order to further improve the performance of intelligent optimization algorithm, this paper proposes an improved and adaptive tunicate swarm algorithm (IMATSA) based on tunicate swarmalgorithm (TSA). IMATSA improves TSA in the following four aspects: population diversity, local search convergence speed, jumping out of local optimal position, and balancing global and local search. Firstly, IMATSA adopts Tent map and quadratic interpolation to initialize population and enhance the diversity. Secondly, IMATSA uses Golden-Sine algorithm to accelerate the convergence of local search. Thirdly, in the process of global development, IMATSA adopts Levy flight and the improved Gauss disturbance method to adaptively improves and coordinates the ability of global development and local search. Then, this paper verifies the performance of IMATSA based on 14 benchmark functions experiment, ablation experiment, parameter optimization experiments of Support Vector Machine (SVM) and Gradient Boosting Decision Tree (GBDT), Wilcoxon signed rank test and image multi-threshold segmentation experiment with the performance metrics are convergence speed, convergence value, significance level P-value, Peak Signal-to-Noise Ratio (PSNR) and Standard Deviation (STD). Experimental results show that IMATSA performs better in three kinds of benchmark functions; each component of IMATSA has a positive effect on the performance; IMATSA performs better in parameter optimization experiments of SVM experiment and GBDT; there is significant difference between IMATSA and other algorithms by Wilcoxon signed rank test; in image segmentation, the performance is directly proportional to the number of thresholds, and compared with other algorithms, IMATSA has better comprehensive performance.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"131 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140196416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. B. Enes, Matheus Nunes, Fabricio Murai, Gisele L. Pappa
{"title":"Temporally-aware node embeddings for evolving networks topologies","authors":"K. B. Enes, Matheus Nunes, Fabricio Murai, Gisele L. Pappa","doi":"10.3233/aic-230028","DOIUrl":"https://doi.org/10.3233/aic-230028","url":null,"abstract":"Static node embedding algorithms applied to snapshots of real-world applications graphs are unable to capture their evolving process. As a result, the absence of information about the dynamics in these node representations can harm the accuracy and increase processing time of machine learning tasks related to these applications. Aiming at fill the gap regarding the inability of static methods to capture evolving processes on dynamic networks, we propose a biased random walk method named Evolving Node Embedding (EVNE). EVNE leverages the sequential relationship of graph snapshots by incorporating historic information when generating embeddings for the next snapshot. It learns node representations through a neural network, but differs from existing methods as it: (i) incorporates previously run walks at each step; (ii) starts the optimization of the current embedding from the parameters obtained in the previous iteration; and (iii) uses two time-varying parameters to regulate the behavior of the biased random walks over the process of graph exploration. Through a wide set of experiments we show that our approach generates better embeddings, outperforming baselines by up to 20% in a downstream node classification task. EVNE’s embeddings achieve better performance than others, based on experiments with four classifiers and five datasets. In addition, we present seven variations of our model to show the impact of each of EVNE’s mechanisms.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"135 15","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139453103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hugo Carrillo, Taco de Wolff, Luis Martí, Nayat Sanchez-Pi
{"title":"Evolutionary multi-objective physics-informed neural networks: The MOPINNs approach","authors":"Hugo Carrillo, Taco de Wolff, Luis Martí, Nayat Sanchez-Pi","doi":"10.3233/aic-230073","DOIUrl":"https://doi.org/10.3233/aic-230073","url":null,"abstract":"Physics-informed neural networks formulation allows the neural network to be trained by both the training data and prior domain knowledge about the physical system that models the data. In particular, it has a loss function for the data and the physics, where the latter is the deviation from a partial differential equation describing the system. Conventionally, both loss functions are combined by a weighted sum, whose weights are usually chosen manually. It is known that balancing between different loss terms can make the training process more efficient. In addition, it is necessary to find the optimal architecture of the neural network in order to find a hypothesis set in which is easier to train the PINN. In our work, we propose a multi-objective optimization approach to find the optimal value for the loss function weighting, as well as the optimal activation function, number of layers, and number of neurons for each layer. We validate our results on the Poisson, Burgers, and advection-diffusion equations and show that we are able to find accurate approximations of the solutions using optimal hyperparameters.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"5 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138998848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jean Lieber, Jean-Guy Mailly, Pierre Marquis, Henri Prade, François Rollin
{"title":"Some thoughts about artificial stupidity and artificial dumbness","authors":"Jean Lieber, Jean-Guy Mailly, Pierre Marquis, Henri Prade, François Rollin","doi":"10.3233/aic-220322","DOIUrl":"https://doi.org/10.3233/aic-220322","url":null,"abstract":"In a recently published book, the French writer and comedian François Rollin has discussed various aspects of the notion of stupidity, including artificial stupidity, the stupid counterpart of artificial intelligence. His claim is that a system of artificial stupidity is a system that provides wrong answers to any task it should solve, leading to absurd solutions in most cases. We believe that this claim is (at least partially) false and that designing artificial stupidity is not as trivial as it seems. In this article, we discuss why and how one could design a system of artificial stupidity. We believe that such a reflection on (artificial) stupidity can bring about some interesting insights about (artificial) intelligence.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"6 5","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138972268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}