{"title":"基于 CycleGAN 的多特征融合去毛刺技术","authors":"Jingpin Wang, Yuan Ge, Jie Zhao, Chao Han","doi":"10.3233/aic-230227","DOIUrl":null,"url":null,"abstract":"Under the foggy environment, lane line images are obscured by haze, which leads to lower detection accuracy, higher false detection of lane lines. To address the above problems, a multi-layer feature fusion dehazing network based on CycleGAN architecture is proposed. Firstly, the foggy image is enhanced to remove the fog in the image, and then the lane line detection network is used for detection. For the dehazing network, a multi-layer feature fusion module is used in the generator to fuse the features of different coding layers of U-Net to enhance the network’s recovery of information such as details and edges, and a frequency domain channel attention mechanism is added at the key nodes of the network to enhance the network’s attention to different fog concentrations. At the same time, to improve the discriminant effect of the discriminator, the discriminator is extended to a global and local discriminator. The experimental results show that the dehaze effect on Reside and other test data sets is better than the comparison method. The peak signal-to-noise ratio is improved by 2.26 dB compared to the highest GCA-Net algorithm. According to the lane detection of fog images, it is found that the proposed network improves the accuracy of lane detection on foggy days.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"73 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-feature fusion dehazing based on CycleGAN\",\"authors\":\"Jingpin Wang, Yuan Ge, Jie Zhao, Chao Han\",\"doi\":\"10.3233/aic-230227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the foggy environment, lane line images are obscured by haze, which leads to lower detection accuracy, higher false detection of lane lines. To address the above problems, a multi-layer feature fusion dehazing network based on CycleGAN architecture is proposed. Firstly, the foggy image is enhanced to remove the fog in the image, and then the lane line detection network is used for detection. For the dehazing network, a multi-layer feature fusion module is used in the generator to fuse the features of different coding layers of U-Net to enhance the network’s recovery of information such as details and edges, and a frequency domain channel attention mechanism is added at the key nodes of the network to enhance the network’s attention to different fog concentrations. At the same time, to improve the discriminant effect of the discriminator, the discriminator is extended to a global and local discriminator. The experimental results show that the dehaze effect on Reside and other test data sets is better than the comparison method. The peak signal-to-noise ratio is improved by 2.26 dB compared to the highest GCA-Net algorithm. According to the lane detection of fog images, it is found that the proposed network improves the accuracy of lane detection on foggy days.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-230227\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-230227","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Under the foggy environment, lane line images are obscured by haze, which leads to lower detection accuracy, higher false detection of lane lines. To address the above problems, a multi-layer feature fusion dehazing network based on CycleGAN architecture is proposed. Firstly, the foggy image is enhanced to remove the fog in the image, and then the lane line detection network is used for detection. For the dehazing network, a multi-layer feature fusion module is used in the generator to fuse the features of different coding layers of U-Net to enhance the network’s recovery of information such as details and edges, and a frequency domain channel attention mechanism is added at the key nodes of the network to enhance the network’s attention to different fog concentrations. At the same time, to improve the discriminant effect of the discriminator, the discriminator is extended to a global and local discriminator. The experimental results show that the dehaze effect on Reside and other test data sets is better than the comparison method. The peak signal-to-noise ratio is improved by 2.26 dB compared to the highest GCA-Net algorithm. According to the lane detection of fog images, it is found that the proposed network improves the accuracy of lane detection on foggy days.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.