Inorganics最新文献

筛选
英文 中文
Chemical Stability of Metal Halide Perovskite Detectors 金属卤化物包荧光体探测器的化学稳定性
Inorganics Pub Date : 2024-02-03 DOI: 10.3390/inorganics12020052
Bin Zhang, Bin Xue, Shuang Xiao, Xingzhu Wang
{"title":"Chemical Stability of Metal Halide Perovskite Detectors","authors":"Bin Zhang, Bin Xue, Shuang Xiao, Xingzhu Wang","doi":"10.3390/inorganics12020052","DOIUrl":"https://doi.org/10.3390/inorganics12020052","url":null,"abstract":"Metal halide perovskite (MHP) detectors are highly esteemed for their outstanding photoelectric properties and versatility in applications. However, they are unfortunately prone to degradation, which constitutes a significant barrier to their sustained performance. This review meticulously delves into the causes leading to their instability, predominantly attributable to factors such as humidity, temperature, and electric fields and, notably, to various radiation factors such as X-rays, γ-rays, electron beams, and proton beams. Furthermore, it outlines recent advancements in strategies aimed at mitigating these detrimental effects, emphasizing breakthroughs in composition engineering, heterostructure construction, and encapsulation methodologies. At last, this review underscores the needs for future improvements in theoretical studies, material design, and standard testing protocols. In the pursuit of optimizing the chemical stability of MHP detectors, collaborative efforts are in an imperative need. In this way, broad industrial applications of MHP detectors could be achieved.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139808283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO–Doped CaO Binary Core–Shell Catalysts for Biodiesel Production via Mexican Palm Oil Transesterification 通过墨西哥棕榈油酯交换反应生产生物柴油的氧化锌掺杂氧化钙二元核壳催化剂
Inorganics Pub Date : 2024-02-03 DOI: 10.3390/inorganics12020051
M. G. Arenas-Quevedo, M. E. Manríquez, J. A. Wang, O. Elizalde-Solis, J. González-García, A. Zúñiga-Moreno, L. F. Chen
{"title":"ZnO–Doped CaO Binary Core–Shell Catalysts for Biodiesel Production via Mexican Palm Oil Transesterification","authors":"M. G. Arenas-Quevedo, M. E. Manríquez, J. A. Wang, O. Elizalde-Solis, J. González-García, A. Zúñiga-Moreno, L. F. Chen","doi":"10.3390/inorganics12020051","DOIUrl":"https://doi.org/10.3390/inorganics12020051","url":null,"abstract":"This work investigates biodiesel production via transesterification of Mexican palm oil with methanol catalyzed by binary solid base core–shell catalysts with improved catalytic stability. A series of CaO–ZnO mixed solids were prepared using an inexpensive co–precipitation method by varying ZnO content from 5 to 20 mol%. Several factors, such as surface basicity, ZnO content, phase compositions, and thermal treatment of the catalysts, were all proven to be crucial for the production of biodiesel with good quality. Thermal treatment could effectively remove the surface adsorbed water and impurities and improved the catalytic activity. The addition of ZnO to CaO significantly enhanced the catalysts’ stability; however, it led to lower surface basicity and slightly diminished catalytic activity. ZnO doping inhibited the formation of surface Ca(OH)2 and promoted the formation of Ca–Zn–O or CaZn2(OH)6 phase as the core and a surface CaCO3 shell, which effectively decreased Ca2+ leaching by approximately 74% in methanol and 65% in a methanol–glycerol (4:1) mixture. A combined method of separation and purification for obtaining clean biodiesel with high quality was proposed. The biodiesel obtained under the control conditions exhibited properties which satisfied the corresponding standards well.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139807549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Infrared Free-Electron Laser Irradiation of Protein Complexes Binding to Salen-Type Schiff Base Zn(II) Complexes Using Secondary Conformational Changes in the Proteins for the Treatment of Alzheimer’s Disease 应用红外自由电子激光照射与萨伦型希夫碱 Zn(II) 复合物结合的蛋白质,利用蛋白质的次级构象变化治疗阿尔茨海默病
Inorganics Pub Date : 2024-02-03 DOI: 10.3390/inorganics12020050
Hiroshi Takashima, Daisuke Nakane, T. Akitsu
{"title":"Application of Infrared Free-Electron Laser Irradiation of Protein Complexes Binding to Salen-Type Schiff Base Zn(II) Complexes Using Secondary Conformational Changes in the Proteins for the Treatment of Alzheimer’s Disease","authors":"Hiroshi Takashima, Daisuke Nakane, T. Akitsu","doi":"10.3390/inorganics12020050","DOIUrl":"https://doi.org/10.3390/inorganics12020050","url":null,"abstract":"Alzheimer’s disease causes the destruction of cranial nerve cells and is said to be caused by neuronal cell death due to the accumulation of amyloid-β protein. One method for the treatment of Alzheimer’s disease is to reduce the toxicity of the amyloid beta protein. Among the possibilities is to reduce toxicity by changing the secondary structure of the protein. In this study, the secondary structure of the protein was verified by binding a zinc complex to the protein and irradiating it with an infrared free-electron laser (IR-FEL). By binding Salen-Type zinc complexes to human serum albumin (HSA) and irradiating it with IR-FEL, structural changes were observed in the α-helix and β-sheet, the secondary structure of HSA. In addition to researching the possibility of binding zinc complexes to small proteins, docking simulations were examined. GOLD docking simulations showed that it is possible to bind zinc complexes to lysozyme (Lyz), a small protein. These results suggest that binding zinc complexes to amyloid-β and inducing a secondary conformational change through IR-FEL irradiation could be used for the treatment of Alzheimer’s disease by making the complexes lose their toxicity.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139807839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Infrared Free-Electron Laser Irradiation of Protein Complexes Binding to Salen-Type Schiff Base Zn(II) Complexes Using Secondary Conformational Changes in the Proteins for the Treatment of Alzheimer’s Disease 应用红外自由电子激光照射与萨伦型希夫碱 Zn(II) 复合物结合的蛋白质,利用蛋白质的次级构象变化治疗阿尔茨海默病
Inorganics Pub Date : 2024-02-03 DOI: 10.3390/inorganics12020050
Hiroshi Takashima, Daisuke Nakane, T. Akitsu
{"title":"Application of Infrared Free-Electron Laser Irradiation of Protein Complexes Binding to Salen-Type Schiff Base Zn(II) Complexes Using Secondary Conformational Changes in the Proteins for the Treatment of Alzheimer’s Disease","authors":"Hiroshi Takashima, Daisuke Nakane, T. Akitsu","doi":"10.3390/inorganics12020050","DOIUrl":"https://doi.org/10.3390/inorganics12020050","url":null,"abstract":"Alzheimer’s disease causes the destruction of cranial nerve cells and is said to be caused by neuronal cell death due to the accumulation of amyloid-β protein. One method for the treatment of Alzheimer’s disease is to reduce the toxicity of the amyloid beta protein. Among the possibilities is to reduce toxicity by changing the secondary structure of the protein. In this study, the secondary structure of the protein was verified by binding a zinc complex to the protein and irradiating it with an infrared free-electron laser (IR-FEL). By binding Salen-Type zinc complexes to human serum albumin (HSA) and irradiating it with IR-FEL, structural changes were observed in the α-helix and β-sheet, the secondary structure of HSA. In addition to researching the possibility of binding zinc complexes to small proteins, docking simulations were examined. GOLD docking simulations showed that it is possible to bind zinc complexes to lysozyme (Lyz), a small protein. These results suggest that binding zinc complexes to amyloid-β and inducing a secondary conformational change through IR-FEL irradiation could be used for the treatment of Alzheimer’s disease by making the complexes lose their toxicity.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ZnO–Doped CaO Binary Core–Shell Catalysts for Biodiesel Production via Mexican Palm Oil Transesterification 通过墨西哥棕榈油酯交换反应生产生物柴油的氧化锌掺杂氧化钙二元核壳催化剂
Inorganics Pub Date : 2024-02-03 DOI: 10.3390/inorganics12020051
M. G. Arenas-Quevedo, M. E. Manríquez, J. A. Wang, O. Elizalde-Solis, J. González-García, A. Zúñiga-Moreno, L. F. Chen
{"title":"ZnO–Doped CaO Binary Core–Shell Catalysts for Biodiesel Production via Mexican Palm Oil Transesterification","authors":"M. G. Arenas-Quevedo, M. E. Manríquez, J. A. Wang, O. Elizalde-Solis, J. González-García, A. Zúñiga-Moreno, L. F. Chen","doi":"10.3390/inorganics12020051","DOIUrl":"https://doi.org/10.3390/inorganics12020051","url":null,"abstract":"This work investigates biodiesel production via transesterification of Mexican palm oil with methanol catalyzed by binary solid base core–shell catalysts with improved catalytic stability. A series of CaO–ZnO mixed solids were prepared using an inexpensive co–precipitation method by varying ZnO content from 5 to 20 mol%. Several factors, such as surface basicity, ZnO content, phase compositions, and thermal treatment of the catalysts, were all proven to be crucial for the production of biodiesel with good quality. Thermal treatment could effectively remove the surface adsorbed water and impurities and improved the catalytic activity. The addition of ZnO to CaO significantly enhanced the catalysts’ stability; however, it led to lower surface basicity and slightly diminished catalytic activity. ZnO doping inhibited the formation of surface Ca(OH)2 and promoted the formation of Ca–Zn–O or CaZn2(OH)6 phase as the core and a surface CaCO3 shell, which effectively decreased Ca2+ leaching by approximately 74% in methanol and 65% in a methanol–glycerol (4:1) mixture. A combined method of separation and purification for obtaining clean biodiesel with high quality was proposed. The biodiesel obtained under the control conditions exhibited properties which satisfied the corresponding standards well.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical Stability of Metal Halide Perovskite Detectors 金属卤化物包荧光体探测器的化学稳定性
Inorganics Pub Date : 2024-02-03 DOI: 10.3390/inorganics12020052
Bin Zhang, Bin Xue, Shuang Xiao, Xingzhu Wang
{"title":"Chemical Stability of Metal Halide Perovskite Detectors","authors":"Bin Zhang, Bin Xue, Shuang Xiao, Xingzhu Wang","doi":"10.3390/inorganics12020052","DOIUrl":"https://doi.org/10.3390/inorganics12020052","url":null,"abstract":"Metal halide perovskite (MHP) detectors are highly esteemed for their outstanding photoelectric properties and versatility in applications. However, they are unfortunately prone to degradation, which constitutes a significant barrier to their sustained performance. This review meticulously delves into the causes leading to their instability, predominantly attributable to factors such as humidity, temperature, and electric fields and, notably, to various radiation factors such as X-rays, γ-rays, electron beams, and proton beams. Furthermore, it outlines recent advancements in strategies aimed at mitigating these detrimental effects, emphasizing breakthroughs in composition engineering, heterostructure construction, and encapsulation methodologies. At last, this review underscores the needs for future improvements in theoretical studies, material design, and standard testing protocols. In the pursuit of optimizing the chemical stability of MHP detectors, collaborative efforts are in an imperative need. In this way, broad industrial applications of MHP detectors could be achieved.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139868197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capturing Unstable Metallofullerenes 捕捉不稳定的金属富勒烯
Inorganics Pub Date : 2024-01-31 DOI: 10.3390/inorganics12020048
Fupin Liu, Alexey A. Popov
{"title":"Capturing Unstable Metallofullerenes","authors":"Fupin Liu, Alexey A. Popov","doi":"10.3390/inorganics12020048","DOIUrl":"https://doi.org/10.3390/inorganics12020048","url":null,"abstract":"Metallofullerenes are interesting molecules with unique structures and physicochemical properties. After they are formed in the arc-discharge process, they are first buried in the carbon soot, which requires solvent extraction to fish them out, normally followed by HPLC separation. In this minireview, we summarize the main procedures developed to obtain pure metallofullerenes, including well-established extraction with conventional fullerene solvents followed by HPLC (procedure (I) as well as several methods developed for isolation and purification of unstable fullerenes insoluble in conventional fullerene solvents, including chemical modification followed by dissolution (II.1), chemical functionalization during extraction followed by HPLC (II.2), and chemical functionalization of ionic EMFs after redox-extraction followed by HPLC (procedure II.3). The main focus here is on procedure II.3, for which the current status and future perspective are discussed.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140475289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperthermia and Photocatalytic Performance of Magnetic Polyvinyl Alcohol under External Magnetic Field 磁性聚乙烯醇在外加磁场下的热效应和光催化性能
Inorganics Pub Date : 2024-01-30 DOI: 10.3390/inorganics12020047
M. Khowdiary, Hind Alsnani, Mohamed S. A. Darwish
{"title":"Hyperthermia and Photocatalytic Performance of Magnetic Polyvinyl Alcohol under External Magnetic Field","authors":"M. Khowdiary, Hind Alsnani, Mohamed S. A. Darwish","doi":"10.3390/inorganics12020047","DOIUrl":"https://doi.org/10.3390/inorganics12020047","url":null,"abstract":"The promising physical and chemical properties of components of magnetic polymers could enable extending their intelligent behaviors to material applications. Indeed, investigation into magnetic nanofillers to ensure their uniform dispersion within the polymer matrix remains a great challenge at present. In this work, polyvinyl alcohol-stabilized iron oxide nanoparticles (PVA@IONPs) were prepared using ultrasonic-assisted coprecipitation at room temperature. It is possible to produce PVA@IONPs with desirable shapes and sizes, which would enable the control of their hyperthermia and photocatalytic performance under an external magnetic field. The saturation magnetization of PVA@IONPs (45.08 emu g−1) was enhanced to the level of IONPs (41.93 emu g−1). The PVA@IONPs showed good photocatalytic and outstanding self-heating behavior. The hydrogen yield was 60 mmole min−1 g−1 for photocatalyst PVA@IONPs under visible light with magnetic force. In addition, the PVA@IONPs exhibited a higher specific absorption rate (SAR) than IONPs under the same magnetic field conditions. The PVA@IONPs displayed superior self-heating and photocatalytic performances, rendering them appropriate materials for biomedical and environmental applications.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140482125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability and Electronic Properties of 1D and 2D Ca@C60 Oligomers and Polymers 一维和二维 Ca@C60 低聚物和聚合物的稳定性和电子特性
Inorganics Pub Date : 2024-01-29 DOI: 10.3390/inorganics12020045
Yabei Wu, Zhonghao Zhou, Zhiyong Wang
{"title":"Stability and Electronic Properties of 1D and 2D Ca@C60 Oligomers and Polymers","authors":"Yabei Wu, Zhonghao Zhou, Zhiyong Wang","doi":"10.3390/inorganics12020045","DOIUrl":"https://doi.org/10.3390/inorganics12020045","url":null,"abstract":"The polymerization of fullerenes is a significant method for obtaining fullerene-based materials that possess intriguing properties. Metallofullerenes, as a notable type of fullerene derivatives, are also capable of undergoing polymerization, potentially resulting in the creation of metallofullerene polymers. However, there is currently limited knowledge regarding the polymerization process of metallofullerenes. In this study, we have selected Ca@C 60 as a representative compound to investigate the polymerization process of metallofullerenes. The objective of this research is to determine whether the polymerization process is energetically favorable and to examine how the electronic properties of the metallofullerene are altered throughout the polymerization process. Ca@C 60 is a unique metallofullerene molecule that exhibits insolubility in common fullerene solvents like toluene and carbon disulfide but is soluble in aniline. This behavior suggests a potential tendency for Ca@C 60 to form oligomers and polymers that resist dissolution. However, the structures and properties of polymerized Ca@C 60 remain unknown. We employed density functional theory calculations to investigate the stability and electronic properties of one-dimensional and two-dimensional Ca@C 60 oligomers and polymers. Our findings indicate that the coalescence of Ca@C 60 monomers is energetically favorable, with a significant contribution from van der Waals interactions between the fullerene cages. The polymerization process of Ca@C 60 also involves the formation of covalent linkages, including four-atom rings and C-C single bonds. The increase in the number of the Ca@C 60 units to three and four in the oligomer leads to a significant decrease in the HOMO-LUMO gap. In the two-dimensional polymerized Ca@C 60, the organization of the monomers closely resembles the spatial configuration of carbon atoms in graphene. With a direct bandgap of 0.22 eV, the polymerized Ca@C 60 holds potential for utilization in optoelectronic devices.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140490115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations of the Influence of Two Pyridyl-Mesoionic Carbene Constitutional Isomers on the Electrochemical and Spectroelectrochemical Properties of Group 6 Metal Carbonyl Complexes 研究两种吡啶-甲磺酰基碳烯构型异构体对第 6 族金属羰基络合物的电化学和光谱电化学性质的影响
Inorganics Pub Date : 2024-01-29 DOI: 10.3390/inorganics12020046
Tobias Bens, Biprajit Sarkar
{"title":"Investigations of the Influence of Two Pyridyl-Mesoionic Carbene Constitutional Isomers on the Electrochemical and Spectroelectrochemical Properties of Group 6 Metal Carbonyl Complexes","authors":"Tobias Bens, Biprajit Sarkar","doi":"10.3390/inorganics12020046","DOIUrl":"https://doi.org/10.3390/inorganics12020046","url":null,"abstract":"Metal complexes of mesoionic carbenes (MICs) of the triazolylidene type and their derivatives have gained increasing attention in the fields of electrocatalysis and photochemistry. The redox activity of these metal complexes is critical for their applications in both the aforementioned fields. Easy accessibility and modular synthesis open a wide field for the design of ligands, such as bidentate ligands. The combination of an MIC with a pyridyl unit in a bidentate ligand setup increases the π acceptor properties of the ligands while retaining their strong σ donor properties. The analogy with the well-established 2,2′-bipyridine ligand allows conclusions to be drawn about the influence of the mesoionic carbene (MIC) moiety in tetracarbonyl group 6 complexes in cyclic voltammetry and (spectro)electrochemistry (SEC). However, the effects of the different connectivity in pyridyl-MIC ligands remain underexplored. Based on our previous studies, we present a thorough investigation of the influence of the two different pyridyl-MIC constitutional isomers on the electrochemical and the UV-vis-NIR/IR/EPR spectroelectrochemical properties of group 6 carbonyl complexes. Moreover, the presented complexes were investigated for the electrochemical conversion of CO2 using two different working electrodes, providing a fundamental understanding of the influence of the electrode material in the precatalytic activation.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140486497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信