Cerebellum最新文献

筛选
英文 中文
Single-Session Cerebellar Transcranial Direct Current Stimulation Improves Postural Stability and Reduces Ataxia Symptoms in Spinocerebellar Ataxia. 单次小脑经颅直流电刺激可改善脊髓小脑共济失调症患者的姿势稳定性并减轻共济失调症状
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-05-02 DOI: 10.1007/s12311-024-01696-9
Rodrigo Brito, João Victor Fabrício, Aurine Araujo, Gabriel Barreto, Adriana Baltar, Kátia Monte-Silva
{"title":"Single-Session Cerebellar Transcranial Direct Current Stimulation Improves Postural Stability and Reduces Ataxia Symptoms in Spinocerebellar Ataxia.","authors":"Rodrigo Brito, João Victor Fabrício, Aurine Araujo, Gabriel Barreto, Adriana Baltar, Kátia Monte-Silva","doi":"10.1007/s12311-024-01696-9","DOIUrl":"10.1007/s12311-024-01696-9","url":null,"abstract":"<p><p>Spinocerebellar ataxia (SCA) results in balance and coordination impairment, and current treatments have limited efficacy. Recent evidence suggests that combining postural training with cerebellar transcranial direct current stimulation (ctDCS) can improve these symptoms. However, the combined effects of ctDCS and postural training on individuals with spinocerebellar ataxia remain underexplored. Ten volunteers with (SCA type 3) participated in a triple-blind, randomized, crossover study to receive a single session of ctDCS (2 mA for 20 min) and a sham ctDCS session separated by at least one week. The Biodex Balance System was used to assess balance at each session, measuring overall stability index, anteroposterior stability index, and medial-lateral stability index. As secondary outcomes, cerebellar ataxia symptoms were evaluated using the 8-item Scale for Assessment and Rating of Ataxia. The assessments were conducted before and after each session. The results indicated that ctDCS enhanced the overall stability index when compared to sham ctDCS (Z = -2.10, p = 0.03), although it did not significantly affect the anteroposterior or medial-lateral stability indices. Compared to the baseline, a single session of ctDCS reduced appendicular symptoms related to cerebellar ataxia, as evidenced by improvements in the nose-finger test (Z = -2.07, p = 0.04), fast alternating hand movements (Z = -2.15, p = 0.03), and heel-to-shin slide (Z = -1.91, p = 0.05). In conclusion, our study suggests that a single session of ctDCS, in combination with postural training, can enhance balance and alleviate ataxia symptoms in individuals with cerebellar ataxia. This study was approved by the local research ethics committee (No. 2.877.813) and registered on clinicaltrials.org (NCT04039048 - https://www.clinicaltrials.gov/study/NCT04039048 ) on 2019-07-28.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential Clinical Benefit of Very Long Chain Fatty Acid Supplementation in Spinocerebellar Ataxia Type 34. 补充极长链脂肪酸对脊髓灰质炎共济失调 34 型的潜在临床益处。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-05-21 DOI: 10.1007/s12311-024-01705-x
José Gazulla, José Berciano
{"title":"Potential Clinical Benefit of Very Long Chain Fatty Acid Supplementation in Spinocerebellar Ataxia Type 34.","authors":"José Gazulla, José Berciano","doi":"10.1007/s12311-024-01705-x","DOIUrl":"10.1007/s12311-024-01705-x","url":null,"abstract":"<p><p>Spinocerebellar ataxia type 34 (SCA34) is a dominantly inherited disease that causes late-onset ataxia, in association with skin lesions in the form of erythrokeratodermia variabilis. It is caused by mutations in the ELOVL4 gene, which encodes for the ELOVL4 protein and has the function of lengthening very long chain (VLC) fatty acids (FA), which are important components of central myelin. The aim of this work was to review the medical literature on the biochemical abnormalities of SCA34, and based on the obtained information, to propose supplementation of deficient FAs. A review of the ad hoc medical literature was performed. Plasma levels of the ELOVL4 products C32, C34 and C36 FA have not been reported in SCA34 yet. However, pathogenic variants of ELOVL4 revealed deficient biosynthesis of C28, C30, C32, C34 and C36 FA compared to WT in cell cultures, and the levels of ceramides and phosphatidylcholines containing ≥ 34 C FA were decreased compared to WT in HeLa cells expressing mutant SCA34 proteins. Besides, a pathological study of SCA34 revealed myelin destruction and loss of oligodendrocytes in cerebral and cerebellar white matter. Levels of VLC-FA should be determined, to identify specifically deficient FAs in SCA34. Cerebellar ataxia could possibly be improved by administration of the deficient FAs, as found in SCA38 with supplementation of docosahexaenoic acid. The authors suggest investigators with access to SCA34, to take into consideration this therapeutic hypothesis, and try to verify the potential efficacy of administration of VLCFA in this disease.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias. CHARON:基于成像的诊断算法,在遗传性退行性共济失调的海洋中航行。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-03-04 DOI: 10.1007/s12311-024-01677-y
Alessandra Scaravilli, Mario Tranfa, Giuseppe Pontillo, Bernard Brais, Giovanna De Michele, Roberta La Piana, Francesco Saccà, Filippo Maria Santorelli, Matthis Synofzik, Arturo Brunetti, Sirio Cocozza
{"title":"CHARON: An Imaging-Based Diagnostic Algorithm to Navigate Through the Sea of Hereditary Degenerative Ataxias.","authors":"Alessandra Scaravilli, Mario Tranfa, Giuseppe Pontillo, Bernard Brais, Giovanna De Michele, Roberta La Piana, Francesco Saccà, Filippo Maria Santorelli, Matthis Synofzik, Arturo Brunetti, Sirio Cocozza","doi":"10.1007/s12311-024-01677-y","DOIUrl":"10.1007/s12311-024-01677-y","url":null,"abstract":"<p><p>The complexity in diagnosing hereditary degenerative ataxias lies not only in their rarity, but also in the variety of different genetic conditions that can determine sometimes similar and overlapping clinical findings. In this light, Magnetic Resonance Imaging (MRI) plays a key role in the evaluation of these conditions, being a fundamental diagnostic tool needed not only to exclude other causes determining the observed clinical phenotype, but also to proper guide to an adequate genetic testing. Here, we propose an MRI-based diagnostic algorithm named CHARON (Characterization of Hereditary Ataxias Relying On Neuroimaging), to help in disentangling among the numerous, and apparently very similar, hereditary degenerative ataxias. Being conceived from a neuroradiological standpoint, it is based primarily on an accurate evaluation of the observed MRI findings, with the first and most important being the pattern of cerebellar atrophy. Along with the evaluation of the presence, or absence, of additional signal changes and/or supratentorial involvement, CHARON allows for the identification of a small groups of ataxias sharing similar imaging features. The integration of additional MRI findings, demographic, clinical and laboratory data allow then for the identification of typical, and in some cases pathognomonic, phenotypes of hereditary ataxias.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489197/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140023127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Driving Mitochondrial Fission Improves Cognitive, but not Motor Deficits in a Mouse Model of Ataxia of Charlevoix-Saguenay. 驱动线粒体分裂可改善夏洛瓦-萨格奈共济失调小鼠模型的认知障碍,但不能改善运动障碍。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-05-13 DOI: 10.1007/s12311-024-01701-1
Chunling Chen, Ronald A Merrill, Chian Ju Jong, Stefan Strack
{"title":"Driving Mitochondrial Fission Improves Cognitive, but not Motor Deficits in a Mouse Model of Ataxia of Charlevoix-Saguenay.","authors":"Chunling Chen, Ronald A Merrill, Chian Ju Jong, Stefan Strack","doi":"10.1007/s12311-024-01701-1","DOIUrl":"10.1007/s12311-024-01701-1","url":null,"abstract":"<p><p>Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bβ2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bβ2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consensus Paper: Cerebellum and Reward. 共识文件:小脑与奖赏。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-05-20 DOI: 10.1007/s12311-024-01702-0
Mario Manto, Michael Adamaszek, Richard Apps, Erik Carlson, Julian Guarque-Chabrera, Elien Heleven, Shinji Kakei, Kamran Khodakhah, Sheng-Han Kuo, Chi-Ying R Lin, Mati Joshua, Marta Miquel, Hiroshi Mitoma, Noga Larry, Julie Anne Péron, Jasmine Pickford, Dennis J L G Schutter, Manpreet K Singh, Tommy Tan, Hirokazu Tanaka, Peter Tsai, Frank Van Overwalle, Kunihiko Yamashiro
{"title":"Consensus Paper: Cerebellum and Reward.","authors":"Mario Manto, Michael Adamaszek, Richard Apps, Erik Carlson, Julian Guarque-Chabrera, Elien Heleven, Shinji Kakei, Kamran Khodakhah, Sheng-Han Kuo, Chi-Ying R Lin, Mati Joshua, Marta Miquel, Hiroshi Mitoma, Noga Larry, Julie Anne Péron, Jasmine Pickford, Dennis J L G Schutter, Manpreet K Singh, Tommy Tan, Hirokazu Tanaka, Peter Tsai, Frank Van Overwalle, Kunihiko Yamashiro","doi":"10.1007/s12311-024-01702-0","DOIUrl":"10.1007/s12311-024-01702-0","url":null,"abstract":"<p><p>Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into the Relationship Between Motor and Cognitive Symptoms in Essential Tremor. 洞察本质性震颤运动症状与认知症状之间的关系
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-05-15 DOI: 10.1007/s12311-024-01704-y
Giulia Paparella, Luca Angelini, Roberta Margiotta, Massimiliano Passaretti, Daniele Birreci, Davide Costa, Antonio Cannavacciuolo, Martina De Riggi, Danilo Alunni Fegatelli, Matteo Bologna
{"title":"Insight into the Relationship Between Motor and Cognitive Symptoms in Essential Tremor.","authors":"Giulia Paparella, Luca Angelini, Roberta Margiotta, Massimiliano Passaretti, Daniele Birreci, Davide Costa, Antonio Cannavacciuolo, Martina De Riggi, Danilo Alunni Fegatelli, Matteo Bologna","doi":"10.1007/s12311-024-01704-y","DOIUrl":"10.1007/s12311-024-01704-y","url":null,"abstract":"<p><p>Essential tremor (ET) is a heterogeneous disorder characterized by bilateral upper limbs action tremor and, possibly, neurological signs of uncertain significance, including voluntary movement abnormalities and cognitive disturbances, i.e., the so-called 'soft' signs configuring the ET-plus definition. While motor and cognitive disturbances often coexist in ET, their interrelationship remains largely unexplored. Here we aim to further investigate the relationship between motor symptoms, objectively assessed through kinematic analysis, and cognitive dysfunctions in ET. Seventy ET patients underwent clinical examination, as well as kinematic recordings of tremor and finger tapping and a thorough cognitive assessment. We then tested clinic-demographic and kinematic differences between patients with and without cognitive abnormalities, i.e., with mild cognitive impairment (MCI). Correlation analysis served to explore potential associations between kinematic and cognitive data. Forty-three ET patients (61.42%) had MCI. ET-MCI patients exhibited reduced movement velocity during finger tapping compared to those with normal cognition (p < 0.001). Lower movement velocity during finger tapping was associated with poorer cognitive performance. Namely, we observed a correlation between movement velocity and performance on the Babcock Story Immediate and Delayed Recall Test (r = 0.52 and r = 0.45, both p < 0.001), as well as the interference memory task at 10 and 30 s (r = 0.3, p = 0.008 and r = 0.2, p = 0.03). In this study, we have provided data for a better pathophysiological interpretation of motor and cognitive signs in ET, including the role played by the cerebellum or extra-cerebellar areas, which possibly underpin both signs.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progressive Ataxia due to de novo Missense Variants in the CACNA1A Gene. 由 CACNA1A 基因中的新发错义变异引起的进行性共济失调。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-06-13 DOI: 10.1007/s12311-024-01710-0
Chen-Hao Zhu, Jin-Yang Yu, Yin Ma, Yi Dong, Zhi-Ying Wu
{"title":"Progressive Ataxia due to de novo Missense Variants in the CACNA1A Gene.","authors":"Chen-Hao Zhu, Jin-Yang Yu, Yin Ma, Yi Dong, Zhi-Ying Wu","doi":"10.1007/s12311-024-01710-0","DOIUrl":"10.1007/s12311-024-01710-0","url":null,"abstract":"<p><p>The CACNA1A gene encodes the alpha-1A subunit of P/Q type voltage-gated calcium channel Ca<sub>v</sub>2.1, which is associated with a broad clinical spectrum and variable symptomatology. While few patients with progressive ataxia caused by CACNA1A missense variants have been reported, here we report three unrelated Chinese patients with progressive ataxia due to de novo missense variants in the CACNA1A gene, including a novel pathogenic variant (c.4999C > G) and a previously reported pathogenic variant (c.4037G > A). Our findings and a systematic literature review show the unique phenotype of progressive ataxia caused by missense variants and enlarge the genetic and clinical spectrum of CACNA1A. This suggests that in addition to routine screening for dynamic mutations, screening for CACNA1A variants is important for clinicians facing patients with progressive ataxia.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ocular Flutter Evoked by Vestibular Stimulation in Multiple System Atrophy with Predominant Cerebellar Ataxia. 前庭刺激诱发多系统萎缩伴小脑共济失调的眼球跳动。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-06-24 DOI: 10.1007/s12311-024-01713-x
Min-Ggyung So, Sun-Uk Lee, Chan-Nyoung Lee, Ji-Soo Kim
{"title":"Ocular Flutter Evoked by Vestibular Stimulation in Multiple System Atrophy with Predominant Cerebellar Ataxia.","authors":"Min-Ggyung So, Sun-Uk Lee, Chan-Nyoung Lee, Ji-Soo Kim","doi":"10.1007/s12311-024-01713-x","DOIUrl":"10.1007/s12311-024-01713-x","url":null,"abstract":"","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Case Report: An Adult Case of Poretti-Boltshauser Syndrome Diagnosed by Medical Checkup. 病例报告:一例通过体检确诊的波雷蒂-博尔特豪泽综合征成人病例。
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-02-29 DOI: 10.1007/s12311-024-01673-2
Kensuke Ikeda, Ayane Tamagake, Takafumi Kubota, Rumiko Izumi, Tatsuo Yamaguchi, Kumiko Yanagi, Tatsuro Misu, Yoko Aoki, Tadashi Kaname, Masashi Aoki
{"title":"Case Report: An Adult Case of Poretti-Boltshauser Syndrome Diagnosed by Medical Checkup.","authors":"Kensuke Ikeda, Ayane Tamagake, Takafumi Kubota, Rumiko Izumi, Tatsuo Yamaguchi, Kumiko Yanagi, Tatsuro Misu, Yoko Aoki, Tadashi Kaname, Masashi Aoki","doi":"10.1007/s12311-024-01673-2","DOIUrl":"10.1007/s12311-024-01673-2","url":null,"abstract":"<p><p>This report describes an adult case of Poretti-Boltshauser syndrome (PTBHS) and with novel variants of LAMA1. A 65-year-old Japanese woman with cerebellar malformation identified during a medical checkup was referred to our hospital. Subsequently, neurological examination, brain imaging, and genetic investigation via whole-exome sequencing were performed. The patient presented with mild cerebellar ataxia and intellectual disability. Magnetic resonance imaging revealed cerebellar dysplasia and cysts and an absence of molar tooth sign. Genetic analysis revealed a novel homozygous variant of c.1711_1712del in LAMA1 (NM_005559.4). Most cases with PTBHS are reported in pediatric patients; however, our patient expressed a mild phenotype and was undiagnosed until her 60 s. These findings suggest that PTBHS should be considered in not only pediatric cerebellar dysplasia but also adult cerebellar ataxia with mild presentation.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489215/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139991762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal Nitric Oxide Synthase Regulates Cerebellar Parallel Fiber Slow EPSC in Purkinje Neurons by Modulating STIM1-Gated TRPC3-Containing Channels. 神经元一氧化氮合成酶通过调节 STIM1 门控的含 TRPC3 通道调控小脑平行纤维 Purkinje 神经元的慢速 EPSC
IF 2.7 3区 医学
Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-03-12 DOI: 10.1007/s12311-024-01683-0
Le Gui, Vasiliki Tellios, Yun-Yan Xiang, Qingping Feng, Wataru Inoue, Wei-Yang Lu
{"title":"Neuronal Nitric Oxide Synthase Regulates Cerebellar Parallel Fiber Slow EPSC in Purkinje Neurons by Modulating STIM1-Gated TRPC3-Containing Channels.","authors":"Le Gui, Vasiliki Tellios, Yun-Yan Xiang, Qingping Feng, Wataru Inoue, Wei-Yang Lu","doi":"10.1007/s12311-024-01683-0","DOIUrl":"10.1007/s12311-024-01683-0","url":null,"abstract":"<p><p>Responding to burst stimulation of parallel fibers (PFs), cerebellar Purkinje neurons (PNs) generate a convolved synaptic response displaying a fast excitatory postsynaptic current (EPSC<sub>Fast</sub>) followed by a slow EPSC (EPSC<sub>Slow</sub>). The latter is companied with a rise of intracellular Ca<sup>2+</sup> and critical for motor coordination. The genesis of EPSC<sub>Slow</sub> in PNs results from activation of metabotropic type 1 glutamate receptor (mGluR1), oligomerization of stromal interaction molecule 1 (STIM1) on the membrane of endoplasmic reticulum (ER) and opening of transient receptor potential canonical 3 (TRPC3) channels on the plasma membrane. Neuronal nitric oxide synthase (nNOS) is abundantly expressed in PFs and granule neurons (GNs), catalyzing the production of nitric oxide (NO) hence regulating PF-PN synaptic function. We recently found that nNOS/NO regulates the morphological development of PNs through mGluR1-regulated Ca<sup>2+</sup>-dependent mechanism. This study investigated the role of nNOS/NO in regulating EPSC<sub>Slow</sub>. Electrophysiological analyses showed that EPSC<sub>Slow</sub> in cerebellar slices of nNOS knockout (nNOS<sup>-/-</sup>) mice was significantly larger than that in wildtype (WT) mice. Activation of mGluR1 in cultured PNs from nNOS<sup>-/-</sup> mice evoked larger TRPC3-channel mediated currents and intracellular Ca<sup>2+</sup> rise than that in PNs from WT mice. In addition, nNOS inhibitor and NO-donor increased and decreased, respectively, the TRPC3-current and Ca<sup>2+</sup> rise in PNs. Moreover, the NO-donor effectively decreased TRPC3 currents in HEK293 cells expressing WT STIM1, but not cells expressing a STIM1 with cysteine mutants. These novel findings indicate that nNOS/NO inhibits TRPC3-containig channel mediated cation influx during EPSC<sub>Slow</sub>, at least in part, by S-nitrosylation of STIM1.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140112108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信