{"title":"Expression of Concern: High glucose facilitates cell cycle arrest of rat bone marrow multipotent adult progenitor cells through TGF-β1 and ERK1/2 signaling without change in Oct-4 expression","authors":"","doi":"10.1111/1440-1681.13908","DOIUrl":"10.1111/1440-1681.13908","url":null,"abstract":"<p>\u0000 <span>M. Luo</span>, <span>Z. Liu</span>, <span>H. Hao</span>, <span>T. Lu</span>, <span>M. Chen</span>, <span>M. Lei</span>, <span>C.M. Verfaillie</span>, and <span>Z. Liu</span>, “ <span>High Glucose Facilitates Cell Cycle Arrest of Rat Bone Marrow Multipotent Adult Progenitor Cells through Transforming Growth Factor-β1 and Extracellular Signal-Regulated Kinase 1/2 Signalling without Changing Oct4 Expression</span>,” <i>Clinical and Experimental Pharmacology and Physiology</i> <span>39</span>, no. <span>10</span> (<span>2012</span>): <span>843</span>-<span>851</span>. https://doi.org/10.1111/j.1440-1681.2012.05747.x\u0000 </p><p>This Expression of Concern is for the above article, published online on 14 July 2012, in Wiley Online Library (wileyonlinelibrary.com), and has been issued by agreement between the journal Editor-in-Chief, Yang Yang, and the Publisher, John Wiley & Sons Australia, Ltd. The Expression of Concern has been agreed due to concerns raised by a third party after publication regarding the similarity of certain blots in Figures 2 and 3 and the underlying data that they represent. The authors did not respond to multiple requests for the original data. The journal is issuing this Expression of Concern because the concerns regarding the integrity of the data and the results presented cannot be resolved.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1440-1681.13908","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway","authors":"Yanting Wang, Wei Feng, Shaona Li, Cuicui Liu, Lili Jia, Pei Wang, Linlin Li, Hongyin Du, Wenli Yu","doi":"10.1111/1440-1681.13910","DOIUrl":"10.1111/1440-1681.13910","url":null,"abstract":"<p>Myocardial injury and cardiovascular dysfunction are the most common complications of sepsis, and effective therapeutic candidate is still lacking. This study aims to investigate the protective effect of oxycodone in myocardial injury of lipopolysaccharide-induced sepsis and its related signalling pathways. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout mice, as well as H9c2 cardiomyocytes cultures treated with lipopolysaccharide (LPS) were used as models of septic myocardial injury. H9c2 cardiomyocytes culture showed that oxycodone protected cells from pyroptosis induced by LPS. Mice model confirmed that oxycodone pretreatment significantly attenuated myocardial pathological damage and improved cardiac function demonstrated by increased ejection fraction (EF) and fractional shortening (FS), as well as decreased cardiac troponin I (cTnI) and creatine kinase isoenzymes MB (CK-MB). Oxycodone also reduced the levels of inflammatory factors and oxidative stress damage induced by LPS, which involves pyroptosis-related proteins including: Nod-like receptor protein 3 (NLRP3), Caspase 1, Apoptosis-associated speck-like protein contain a CARD (ASC), and Gasdermin D (GSDMD). These changes were mediated by Nrf2 and heme oxygenase-1 (HO-1) because Nrf2-knockout mice or Nrf2 knockdown in H9c2 cells significantly reversed the beneficial effect of oxycodone on oxidative stress, inflammatory responses and NLRP3-mediated pyroptosis. Our findings yielded that oxycodone therapy reduces LPS-induced myocardial injury by suppressing NLRP3-mediated pyroptosis via the Nrf2/HO-1 signalling pathway in vivo and in vitro.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quercetin-4′-O-β-D-glucopyranoside inhibits podocyte injury by SIRT5-mediated desuccinylation of NEK7","authors":"Menghua Wu, Xiaoli Ye","doi":"10.1111/1440-1681.13909","DOIUrl":"10.1111/1440-1681.13909","url":null,"abstract":"<p>Diabetic kidney disease (DKD) is a complication of diabetic mellitus. New treatments need to be developed. This study aimed to investigate the effects of quercetin-4′-O-β-D-glucopyranoside (QODG) on podocyte injury. Podocytes were cultured in high glucose (HG) medium, treated with QODG, and overexpressing or knocking down SIRT5. Oxidative stress indicators were assessed using corresponding kits. Pyroptosis was detected by flow cytometry and western blot analysis. Succinylation modification was detected using immunoprecipitation (IP) and western blot analysis. The interaction between NEK7 and NLRP3 was determined by co-IP. The results indicated that QODG inhibited oxidative stress and pyroptosis of podocytes induced by HG. Besides, QODG suppressed succinylation levels in HG-induced podocytes, with the upregulation of SIRT5. Knockdown of SIRT5 reversed the effects of QODG on oxidative stress and pyroptosis. Moreover, SIRT5 inhibited the succinylation of NEK7 and the interaction between NLRP3 and NEK7. In conclusion, QODG upregulates SIRT5 to inhibit the succinylation modification of NEK7, impedes the interaction between NEK7 and NLRP3, and then inhibits the pyroptosis and oxidative stress injury of podocytes under HG conditions. The findings suggested that QODG has the potential to treat DKD and explore a novel underlying mechanism of QODG function.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the bidirectional causal associations between pain and circulating inflammatory proteins: A Mendelian randomization study","authors":"Yu Wang, Wenyu Zhou, Faqiang Zhang, Juan Wei, Sheng Wang, Keting Min, Yuanli Chen, Hao Yang, Xin Lv","doi":"10.1111/1440-1681.13905","DOIUrl":"10.1111/1440-1681.13905","url":null,"abstract":"<p>Multisite chronic pain (MCP) and site-specific chronic pain (SSCP) may be influenced by circulating inflammatory proteins, but the causal relationship remains unknown. To overcome this limitation, two-sample bidirectional Mendelian randomization (MR) analysis was used to analyse data for 91 circulating inflammatory proteins, MCP and SSCP encompassing headache, back pain, shoulder pain, hip pain, knee pain, stomach abdominal pain and facial pain. The primary MR method used was inverse variance weighting, sensitivity analyses included weighted median, MR pleiotropy residual sum and outlier and the Egger intercept method. Heterogeneity was also detected using Cochrane's Q test and leave-one-out analyses. Finally, a causal relationship between 29 circulating inflammatory proteins and chronic pain was identified. Among these proteins, 14 exhibited a protective effect, including MCP (T-cell surface glycoprotein cluster of differentiation 5), headache (4E-binding protein 1 [4EBP1], cluster of differentiation 40, cluster of differentiation 6 and C-X-C motif chemokine [CXCL] 11), back pain (leukaemia inhibitory factor), shoulder pain (fibroblast growth factor [FGF]-5 and interleukin [IL]-18R1), stomach abdominal pain (tumour necrosis factor [TNF]-α), hip pain (CXCL1, IL-20 and signalling lymphocytic activation molecule 1) and knee pain (IL-7 and TNF-β). Additionally, 15 proteins were identified as risk factors for MCP and SSCP: MCP (colony-stimulating factor 1, human glial cell line-derived neurotrophic factor and IL-17C), headache (fms-related tyrosine kinase 3 ligand, IL-20 receptor subunit α [IL-20RA], neurotrophin-3 and tumour necrosis factor receptor superfamily member 9), facial pain (CXCL1), back pain (TNF), shoulder pain (IL-17C and matrix metalloproteinase-10), stomach abdominal pain (IL-20RA), hip pain (C-C motif chemokine 11/eotaxin-1 and tumour necrosis factor ligand superfamily member 12) and knee pain (4EBP1). Importantly, in the opposite direction, MCP and SSCP did not exhibit a significant causal impact on circulating inflammatory proteins. Our study identified potential causal influences of various circulating inflammatory proteins on MCP and SSCP and provided promising treatments for the clinical management of MCP and SSCP.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamad Hallak, Ahmet Inal, Mehmet Akif Baktir, Ayhan Atasever
{"title":"Comparison of disease-modifying anti-rheumatic drugs and hyperbaric oxygen therapy in the experimental model of rheumatoid arthritis in rats","authors":"Mohamad Hallak, Ahmet Inal, Mehmet Akif Baktir, Ayhan Atasever","doi":"10.1111/1440-1681.13906","DOIUrl":"10.1111/1440-1681.13906","url":null,"abstract":"<p>In this study, we wanted to investigate the effectiveness of combining disease-modifying anti-rheumatic drugs (DMARD) with hyperbaric oxygen therapy (HBOT) in reducing inflammation in a rheumatoid arthritis (RA) model using rats. We divided 56 male Sprague–Dawley rats into seven groups and induced RA using complete Freund's adjuvant. Some groups received HBOT, whereas others were given etanercept or leflunomide. We started the treatment on the 10th day after inducing RA and continued it for 18 days. To evaluate the effectiveness of the treatments, we measured paw swelling and used X-rays to examine the joints before and after the treatment. We also analysed the levels of two inflammatory markers, tumour necrosis factor (TNF)-α and interleukin (IL)-1β, using an enzyme-linked immunosorbent assay. Additionally, we conducted histological analysis and assessed the expressions of anti-IL-1β and anti-TNF-α antibodies. All the treatment groups showed a significant decrease in arthritis scores, paw swelling and levels of TNF-α and IL-1β. The X-ray images revealed improvements in joint structure, and the histopathological analysis showed reduced inflammation and collagen abnormalities. Combining DMARD with HBOT had similar effects to individual therapies, suggesting a cost-effective and potentially safer approach for improving outcomes in rats with RA.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1440-1681.13906","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianpeng Yang, Lu Huang, Jiale He, Lihong Luo, Weiting Guo, Huajian Chen, Xinyue Jiang, Li Huang, Shumei Ma, Xiaodong Liu
{"title":"Establishment of diagnostic model and identification of diagnostic markers between liver cancer and cirrhosis based on multi-chip and machine learning","authors":"Tianpeng Yang, Lu Huang, Jiale He, Lihong Luo, Weiting Guo, Huajian Chen, Xinyue Jiang, Li Huang, Shumei Ma, Xiaodong Liu","doi":"10.1111/1440-1681.13907","DOIUrl":"10.1111/1440-1681.13907","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Most cases of hepatocellular carcinoma (HCC) arise as a consequence of cirrhosis. In this study, our objective is to construct a comprehensive diagnostic model that investigates the diagnostic markers distinguishing between cirrhosis and HCC.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Based on multiple GEO datasets containing cirrhosis and HCC samples, we used lasso regression, random forest (RF)-recursive feature elimination (RFE) and receiver operator characteristic analysis to screen for characteristic genes. Subsequently, we integrated these genes into a multivariable logistic regression model and validated the linear prediction scores in both training and validation cohorts. The ssGSEA algorithm was used to estimate the fraction of infiltrating immune cells in the samples. Finally, molecular typing for patients with cirrhosis was performed using the CCP algorithm.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The study identified 137 differentially expressed genes (DEGs) and selected five significant genes (CXCL14, CAP2, FCN2, CCBE1 and UBE2C) to construct a diagnostic model. In both the training and validation cohorts, the model exhibited an area under the curve (AUC) greater than 0.9 and a kappa value of approximately 0.9. Additionally, the calibration curve demonstrated excellent concordance between observed and predicted incidence rates. Comparatively, HCC displayed overall downregulation of infiltrating immune cells compared to cirrhosis. Notably, CCBE1 showed strong correlations with the tumour immune microenvironment as well as genes associated with cell death and cellular ageing processes. Furthermore, cirrhosis subtypes with high linear predictive scores were enriched in multiple cancer-related pathways.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>In conclusion, we successfully identified diagnostic markers distinguishing between cirrhosis and hepatocellular carcinoma and developed a novel diagnostic model for discriminating the two conditions. CCBE1 might exert a pivotal role in regulating the tumour microenvironment, cell death and senescence.</p>\u0000 </section>\u0000 </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yachen Wang, Ziwei Wang, Zeyan Peng, Lifeng Feng, Wencong Tian, Shengzheng Zhang, Lei Cao, Jing Li, Liang Yang, Yang Xu, Yang Gao, Jie Liu, Jie Yan, Xiaodong Ma, Wangchun Sun, Lihong Guo, Xuan Li, Yanna Shen, Zhi Qi
{"title":"Cocaine and amphetamine-regulated transcript improves myocardial ischemia–reperfusion injury through PI3K/AKT signalling pathway","authors":"Yachen Wang, Ziwei Wang, Zeyan Peng, Lifeng Feng, Wencong Tian, Shengzheng Zhang, Lei Cao, Jing Li, Liang Yang, Yang Xu, Yang Gao, Jie Liu, Jie Yan, Xiaodong Ma, Wangchun Sun, Lihong Guo, Xuan Li, Yanna Shen, Zhi Qi","doi":"10.1111/1440-1681.13904","DOIUrl":"10.1111/1440-1681.13904","url":null,"abstract":"<p>Myocardial ischemia–reperfusion injury (MIRI) is a common clinic scenario that occurs in the context of reperfusion therapy for acute myocardial infarction. It has been shown that cocaine and amphetamine-regulated transcript (CART) can ameliorate cerebral ischemia–reperfusion (I/R) injury, but the effect of CART on MIRI has not been studied yet. Here, we revealed that CART protected the heart during I/R process by inhibiting apoptosis and excessive autophagy, indicating that CART would be a potential drug candidate for the treatment of MIRI. Further analysis showed that CART upregulated the activation of phospho-AKT, leading to downregulation of lactate dehydrogenase (LDH) release, apoptosis, oxidative stress and excessive autophagy after I/R, which was inhibited by PI3K inhibitor, LY294002. Collectively, CART attenuated MIRI through inhibition of cardiomyocytes apoptosis and excessive autophagy, and the protective effect was dependent on PI3K/AKT signalling pathway.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-world efficacy of dupilumab in four cases of paediatric-onset fibrostenotic eosinophilic esophagitis","authors":"Sophia A. Patel","doi":"10.1111/1440-1681.13903","DOIUrl":"10.1111/1440-1681.13903","url":null,"abstract":"<p>Eosinophilic esophagitis (EoE) is an increasingly prevalent immune-mediated disease that leads to chronic changes in the oesophagus. These changes can include strictures, narrowing, and stenosis, mediated by an interleukin (IL)-13 pathway, which leads to remodelling and fibrosis through increasing migration of fibroblasts and subepithelial fibrosis via collagen deposition 1. IL-13 downregulates TSPAN12, a gene whose expression regulates fibrosis and causes changes in barrier function and higher rates of fibrostenosis in EoE. Dupilumab, a biologic therapy aimed at blocking IL-13, has been shown to improve EoE-related inflammation and fibrosis in clinical trials. We report here four unique patients with documented oesophageal stenosis with inability to pass a paediatric endoscope due to structuring disease, requiring dilation, who had resolution of their oesophageal narrowing following dupilumab therapy.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donglai Zhou, Tao Yu, Zhi Zhang, Guanhua Li, Yaomin Li
{"title":"An integrated bioinformatics analysis reveals IRF8 as a critical biomarker for immune infiltration in atherosclerosis advance","authors":"Donglai Zhou, Tao Yu, Zhi Zhang, Guanhua Li, Yaomin Li","doi":"10.1111/1440-1681.13872","DOIUrl":"10.1111/1440-1681.13872","url":null,"abstract":"<p>Atherosclerosis, a lipid-driven chronic inflammatory disorder, is a significant global health concern associated with high rates of morbidity and mortality, imposing a substantial societal burden. The purpose of this study is to investigate the possible molecular mechanisms of atherosclerosis and identify potential therapeutic targets. We conducted an integrated bioinformatics analysis using data from peripheral blood mononuclear cell and TISSUE databases obtained from the Gene Expression Omnibus, to identify key genes associated with the progression of atherosclerosis. Here, <i>IRF8</i> was found to be a key gene in atherosclerosis patients. Silencing <i>IRF8</i> with small interfering RNA reduced inflammation in endothelial cells. This suggests IRF8 is a crucial biomarker for immune infiltration in atherosclerosis advance.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive analysis of EphA2 in pan-cancer: A prognostic biomarker associated with cancer immunity","authors":"Yuchun Li, Hanxiao Fei, Zhiwen Xiao, Xiuxia Lu, Hua Zhang, Mengmeng Liu","doi":"10.1111/1440-1681.13902","DOIUrl":"10.1111/1440-1681.13902","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Several studies have reported a significant relationship between Ephrin receptor A2 (EphA2) and malignant progression in numerous cancers. However, there is a lack of comprehensive pan-cancer analysis on the prognostic value, mutation status, methylation landscape, and potential immunological function of EphA2.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Method</h3>\u0000 \u0000 <p>Using The Cancer Genome Atlas, Genotype Tissue Expression Database and GEO data, we analysed the differences in EphA2 expression between normal and tumour tissues and the effects of EphA2 on the prognosis of different tumours. Furthermore, using GSCALite, cBioPortal, TISDB, ULCLAN and TIMER 2.0 databases or platforms, we comprehensively analysed the potential oncogenic mechanisms or manifestations of EphA2 in 33 different tumour types, including tumour mutation status, DNA methylation status and immune cell infiltration. The correlation of EphA2 with immune checkpoints, tumour mutational burden, DNA microsatellite instability and DNA repair genes was also calculated. Finally, the effects of EphA2 inhibitors on the proliferation of human glioma and lung cancer cells were verified in cellular experiments.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>EphA2 is differentially expressed in different tumours, and patients with overexpression have poorer overall survival. In addition, gene mutations, gene copy number variation and DNA/RNA methylation of EphA2 have been identified in various tumours. Moreover, EphA2 is positively associated with immune infiltration involving macrophages and CD8+ T cells. Further, EphA2 mRNA expression is significantly associated with immune checkpoint in various cancers, especially programmed death-ligand 1. Finally, the EphA2 inhibitor ALW-II-41-27 shows potent anti-tumour activity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our first pan-cancer study of EphA2 provides insight into the prognostic and immunological roles of EphA2 in different tumours, suggesting that EphA2 might be a potential biomarker for poor prognosis and immune infiltration in cancer.</p>\u0000 </section>\u0000 </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}