M2巨噬细胞衍生外泌体通过lncRNA AFAP1-AS1/EZH2轴抑制足细胞热亡

IF 2.5 4区 医学 Q2 Medicine
Qing Zhan, Huiyun Liu, Minyang Zhao, Haihua Huang
{"title":"M2巨噬细胞衍生外泌体通过lncRNA AFAP1-AS1/EZH2轴抑制足细胞热亡","authors":"Qing Zhan,&nbsp;Huiyun Liu,&nbsp;Minyang Zhao,&nbsp;Haihua Huang","doi":"10.1111/1440-1681.70056","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Macrophage infiltration was closely associated with inflammatory injury of podocytes in diabetic nephropathy (DN), while how macrophages affected podocytes remained not entirely clear. Here, we not only investigated the relationship between macrophages and high glucose (HG)-treated podocytes, but the underlying mechanisms were also explored. Transmission electron microscopy, nanoparticle tracking analysis, and western blot of CD9, CD63, CD81, and Calnexin were performed to identify exosomes; QRT-PCR was performed to detect AFAP1-AS1 expression; Western blot was performed to examine NLRP3, Cleaved caspase-1, and GSDMD-N protein levels; Immunofluorescence was performed to assess co-localisation of NLRP3 and ASC; ELISA was performed to detect IL-18 and IL-1β levels; Cytotoxicity LDH Assay Kit was performed to detect LDH level; RNA pulldown was performed to determine the interaction of AFAP1-AS1 and EZH2; ChIP was employed to determine the interaction of EZH2 and H3K27me3 in the NLRP3 promoter region. The results showed that AFAP1-AS1 expression was down-regulated in the peripheral blood of DN patients, and exosomes derived from M2 macrophages transfected with si-AFAP1-AS1 enhanced HG-induced podocyte pyroptosis via significantly elevating NLRP3, Cleaved caspase-1, and GSDMD-N protein levels, immunofluorescence intensity of NLRP3 and ASC, as well as IL-18, IL-1β, and LDH levels. Mechanistically, AFAP1-AS1 interacted with EZH2 to transcriptionally regulate H3K27me3 level in the NLRP3 promoter region, thus epigenetically repressing NLRP3 level to inhibit podocyte pyroptosis. These results may provide an important target for improving kidney injury in DN.</p>\n </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M2 Macrophages-Derived Exosomes Inhibited Podocyte Pyroptosis via lncRNA AFAP1-AS1/EZH2 Axis\",\"authors\":\"Qing Zhan,&nbsp;Huiyun Liu,&nbsp;Minyang Zhao,&nbsp;Haihua Huang\",\"doi\":\"10.1111/1440-1681.70056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Macrophage infiltration was closely associated with inflammatory injury of podocytes in diabetic nephropathy (DN), while how macrophages affected podocytes remained not entirely clear. Here, we not only investigated the relationship between macrophages and high glucose (HG)-treated podocytes, but the underlying mechanisms were also explored. Transmission electron microscopy, nanoparticle tracking analysis, and western blot of CD9, CD63, CD81, and Calnexin were performed to identify exosomes; QRT-PCR was performed to detect AFAP1-AS1 expression; Western blot was performed to examine NLRP3, Cleaved caspase-1, and GSDMD-N protein levels; Immunofluorescence was performed to assess co-localisation of NLRP3 and ASC; ELISA was performed to detect IL-18 and IL-1β levels; Cytotoxicity LDH Assay Kit was performed to detect LDH level; RNA pulldown was performed to determine the interaction of AFAP1-AS1 and EZH2; ChIP was employed to determine the interaction of EZH2 and H3K27me3 in the NLRP3 promoter region. The results showed that AFAP1-AS1 expression was down-regulated in the peripheral blood of DN patients, and exosomes derived from M2 macrophages transfected with si-AFAP1-AS1 enhanced HG-induced podocyte pyroptosis via significantly elevating NLRP3, Cleaved caspase-1, and GSDMD-N protein levels, immunofluorescence intensity of NLRP3 and ASC, as well as IL-18, IL-1β, and LDH levels. Mechanistically, AFAP1-AS1 interacted with EZH2 to transcriptionally regulate H3K27me3 level in the NLRP3 promoter region, thus epigenetically repressing NLRP3 level to inhibit podocyte pyroptosis. These results may provide an important target for improving kidney injury in DN.</p>\\n </div>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"52 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70056\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70056","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

巨噬细胞浸润与糖尿病肾病(DN)足细胞炎症损伤密切相关,但巨噬细胞如何影响足细胞尚不完全清楚。在这里,我们不仅研究了巨噬细胞和高糖处理足细胞之间的关系,而且还探讨了潜在的机制。通过透射电镜、纳米颗粒跟踪分析和CD9、CD63、CD81和Calnexin的western blot鉴定外泌体;采用QRT-PCR检测AFAP1-AS1的表达;Western blot检测NLRP3、Cleaved caspase-1和GSDMD-N蛋白水平;采用免疫荧光法评估NLRP3和ASC的共定位;ELISA法检测IL-18、IL-1β水平;采用细胞毒性LDH Assay Kit检测LDH水平;采用RNA下拉法测定AFAP1-AS1与EZH2的相互作用;利用ChIP检测EZH2和H3K27me3在NLRP3启动子区域的相互作用。结果显示,AFAP1-AS1在DN患者外周血中的表达下调,转染si-AFAP1-AS1的M2巨噬细胞外泌体通过显著提高NLRP3、Cleaved caspase-1和GSDMD-N蛋白水平,NLRP3和ASC的免疫荧光强度,以及IL-18、IL-1β和LDH水平,增强hg诱导的足细胞焦亡。机制上,AFAP1-AS1与EZH2相互作用,通过转录调控NLRP3启动子区域的H3K27me3水平,从而在表观上抑制NLRP3水平,抑制足细胞焦亡。这些结果可能为改善DN肾损伤提供重要靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
M2 Macrophages-Derived Exosomes Inhibited Podocyte Pyroptosis via lncRNA AFAP1-AS1/EZH2 Axis

Macrophage infiltration was closely associated with inflammatory injury of podocytes in diabetic nephropathy (DN), while how macrophages affected podocytes remained not entirely clear. Here, we not only investigated the relationship between macrophages and high glucose (HG)-treated podocytes, but the underlying mechanisms were also explored. Transmission electron microscopy, nanoparticle tracking analysis, and western blot of CD9, CD63, CD81, and Calnexin were performed to identify exosomes; QRT-PCR was performed to detect AFAP1-AS1 expression; Western blot was performed to examine NLRP3, Cleaved caspase-1, and GSDMD-N protein levels; Immunofluorescence was performed to assess co-localisation of NLRP3 and ASC; ELISA was performed to detect IL-18 and IL-1β levels; Cytotoxicity LDH Assay Kit was performed to detect LDH level; RNA pulldown was performed to determine the interaction of AFAP1-AS1 and EZH2; ChIP was employed to determine the interaction of EZH2 and H3K27me3 in the NLRP3 promoter region. The results showed that AFAP1-AS1 expression was down-regulated in the peripheral blood of DN patients, and exosomes derived from M2 macrophages transfected with si-AFAP1-AS1 enhanced HG-induced podocyte pyroptosis via significantly elevating NLRP3, Cleaved caspase-1, and GSDMD-N protein levels, immunofluorescence intensity of NLRP3 and ASC, as well as IL-18, IL-1β, and LDH levels. Mechanistically, AFAP1-AS1 interacted with EZH2 to transcriptionally regulate H3K27me3 level in the NLRP3 promoter region, thus epigenetically repressing NLRP3 level to inhibit podocyte pyroptosis. These results may provide an important target for improving kidney injury in DN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
128
审稿时长
6 months
期刊介绍: Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信