Communications in Partial Differential Equations最新文献

筛选
英文 中文
Layer separation of the 3D incompressible Navier–Stokes equation in a bounded domain 有界域中三维不可压缩纳维-斯托克斯方程的分层问题
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2024-04-25 DOI: 10.1080/03605302.2024.2346146
Alexis F. Vasseur, Jincheng Yang
{"title":"Layer separation of the 3D incompressible Navier–Stokes equation in a bounded domain","authors":"Alexis F. Vasseur, Jincheng Yang","doi":"10.1080/03605302.2024.2346146","DOIUrl":"https://doi.org/10.1080/03605302.2024.2346146","url":null,"abstract":"We provide an unconditional L2 upper bound for the boundary layer separation of Leray–Hopf solutions in a smooth bounded domain. By layer separation, we mean the discrepancy between a (turbulent) l...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strichartz estimates for Maxwell equations in media: the partially anisotropic case 介质中麦克斯韦方程的斯特里查兹估计:部分各向异性情况
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2024-04-23 DOI: 10.1080/03605302.2024.2341055
Robert Schippa
{"title":"Strichartz estimates for Maxwell equations in media: the partially anisotropic case","authors":"Robert Schippa","doi":"10.1080/03605302.2024.2341055","DOIUrl":"https://doi.org/10.1080/03605302.2024.2341055","url":null,"abstract":"We prove Strichartz estimates for solutions to Maxwell equations in three dimensions with rough permittivities, which have less than three different eigenvalues. To this end, Maxwell equations are ...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141150755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A weakly turbulent solution to the cubic nonlinear harmonic oscillator on ℝ2 perturbed by a real smooth potential decaying to zero at infinity ℝ2上受实数光滑势扰动的立方非线性谐波振荡器的弱湍流解,在无限远处衰减为零
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2024-01-27 DOI: 10.1080/03605302.2024.2302017
Ambre Chabert
{"title":"A weakly turbulent solution to the cubic nonlinear harmonic oscillator on ℝ2 perturbed by a real smooth potential decaying to zero at infinity","authors":"Ambre Chabert","doi":"10.1080/03605302.2024.2302017","DOIUrl":"https://doi.org/10.1080/03605302.2024.2302017","url":null,"abstract":"We build a smooth real potential V(t, x) on (t0,+∞)×R2 decaying to zero as t→∞ and a smooth solution to the associated perturbed cubic noninear harmonic oscillator whose Sobolev norms blow up log...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139589782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Willmore flow with prescribed isoperimetric ratio 规定等压比的威尔莫尔流量
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2024-01-17 DOI: 10.1080/03605302.2024.2302377
Fabian Rupp
{"title":"The Willmore flow with prescribed isoperimetric ratio","authors":"Fabian Rupp","doi":"10.1080/03605302.2024.2302377","DOIUrl":"https://doi.org/10.1080/03605302.2024.2302377","url":null,"abstract":"We introduce a non-local L2-gradient flow for the Willmore energy of immersed surfaces which preserves the isoperimetric ratio. For spherical initial data with energy below an explicit threshold, w...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stationary equilibria and their stability in a Kuramoto MFG with strong interaction 具有强相互作用的仓本 MFG 中的静态平衡及其稳定性
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2024-01-17 DOI: 10.1080/03605302.2023.2300824
Annalisa Cesaroni, Marco Cirant
{"title":"Stationary equilibria and their stability in a Kuramoto MFG with strong interaction","authors":"Annalisa Cesaroni, Marco Cirant","doi":"10.1080/03605302.2023.2300824","DOIUrl":"https://doi.org/10.1080/03605302.2023.2300824","url":null,"abstract":"Recently, R. Carmona, Q. Cormier, and M. Soner proposed a Mean Field Game (MFG) version of the classical Kuramoto model, which describes synchronization phenomena in a large population of “rational...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139518746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasilinear wave equations on Schwarzschild–de Sitter Schwarzschild-de Sitter 上的准线性波方程
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2024-01-07 DOI: 10.1080/03605302.2023.2295035
Georgios Mavrogiannis
{"title":"Quasilinear wave equations on Schwarzschild–de Sitter","authors":"Georgios Mavrogiannis","doi":"10.1080/03605302.2023.2295035","DOIUrl":"https://doi.org/10.1080/03605302.2023.2295035","url":null,"abstract":"We give an elementary new argument for global existence and exponential decay of solutions of quasilinear wave equations on Schwarzschild–de Sitter black hole backgrounds, for appropriately small i...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139460977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Logarithmic Gross-Pitaevskii equation 对数格罗斯-皮塔耶夫斯基方程
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2023-12-29 DOI: 10.1080/03605302.2023.2296924
Rémi Carles, Guillaume Ferriere
{"title":"Logarithmic Gross-Pitaevskii equation","authors":"Rémi Carles, Guillaume Ferriere","doi":"10.1080/03605302.2023.2296924","DOIUrl":"https://doi.org/10.1080/03605302.2023.2296924","url":null,"abstract":"We consider the Schrödinger equation with a logarithmic nonlinearty and non-trivial boundary conditions at infinity. We prove that the Cauchy problem is globally well posed in the energy space, whi...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Schrödinger operators and landscape functions 磁薛定谔算子和景观函数
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2023-12-23 DOI: 10.1080/03605302.2023.2292992
Jeremy G. Hoskins, Hadrian Quan, Stefan Steinerberger
{"title":"Magnetic Schrödinger operators and landscape functions","authors":"Jeremy G. Hoskins, Hadrian Quan, Stefan Steinerberger","doi":"10.1080/03605302.2023.2292992","DOIUrl":"https://doi.org/10.1080/03605302.2023.2292992","url":null,"abstract":"We study localization properties of low-lying eigenfunctions of magnetic Schrödinger operators (−i∇−A(x))2ϕ+V(x)ϕ=λϕ, where V:Ω→R≥0 is a given potential and A:Ω→Rd induces a magnetic field. We e...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary regularity for anisotropic minimal Lipschitz graphs 各向异性最小 Lipschitz 图形的边界正则性
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2023-12-20 DOI: 10.1080/03605302.2023.2294335
Antonio De Rosa, Reinaldo Resende
{"title":"Boundary regularity for anisotropic minimal Lipschitz graphs","authors":"Antonio De Rosa, Reinaldo Resende","doi":"10.1080/03605302.2023.2294335","DOIUrl":"https://doi.org/10.1080/03605302.2023.2294335","url":null,"abstract":"We prove that m-dimensional Lipschitz graphs in any codimension with C1,α boundary and anisotropic mean curvature bounded in Lp, p > m, are regular at every boundary point with density bounded abov...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The convergence rate of p-harmonic to infinity-harmonic functions p调和函数到无穷调和函数的收敛速度
IF 1.9 2区 数学
Communications in Partial Differential Equations Pub Date : 2023-11-30 DOI: 10.1080/03605302.2023.2283830
Leon Bungert
{"title":"The convergence rate of p-harmonic to infinity-harmonic functions","authors":"Leon Bungert","doi":"10.1080/03605302.2023.2283830","DOIUrl":"https://doi.org/10.1080/03605302.2023.2283830","url":null,"abstract":"The purpose of this paper is to prove a uniform convergence rate of the solutions of the p-Laplace equation Δpu=0 with Dirichlet boundary conditions to the solution of the infinity-Laplace equation...","PeriodicalId":50657,"journal":{"name":"Communications in Partial Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信