Can Chen, Huitao Yu, Tao Lai, Jun Guo, Mengmeng Qin, Zhiguo Qu, Yiyu Feng, Wei Feng
{"title":"Flexible and elastic thermal regulator for multimode intelligent temperature control","authors":"Can Chen, Huitao Yu, Tao Lai, Jun Guo, Mengmeng Qin, Zhiguo Qu, Yiyu Feng, Wei Feng","doi":"10.1002/sus2.171","DOIUrl":"https://doi.org/10.1002/sus2.171","url":null,"abstract":"As nonlinear thermal devices, thermal regulators can intelligently respond to temperature and control heat flow through changes in heat transfer capacities, which allows them to reduce energy consumption without external intervention. However, current thermal regulators generally based on high‐quality crystalline‐structure transitions are intrinsically rigid, which may cause structural damage and functional failure under mechanical strain; moreover, they are difficult to integrate into emerging soft electronic platforms. In this study, we develop a flexible, elastic thermal regulator based on the reversible thermally induced deformation of a liquid crystal elastomer/liquid metal (LCE/LM) composite foam. By adjusting the crosslinking densities, the LCE foam exhibits a high actuation strain of 121% with flexibility below the nematic–isotropic phase transition temperature (TNI) and hyperelasticity above TNI. The incorporation of LM results in a high thermal resistance switching ratio of 3.8 over a wide working temperature window of 60°C with good cycling stability. This feature originates from the synergistic effect of fragmentation and recombination of the internal LM network and lengthening and shortening of the bond line thickness. Furthermore, we fabricate a “grid window” utilizing photic‐thermal integrated thermal control, achieving a superior heat supply of 13.7°C at a light intensity of 180 mW/cm2 and a thermal protection of 43.4°C at 1200 mW/cm2. The proposed method meets the mechanical softness requirements of thermal regulator materials with multimode intelligent temperature control.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"37 1","pages":"843 - 858"},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139234576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Challenges and opportunities in 2D high‐entropy alloy electrocatalysts for sustainable energy conversion","authors":"Die Lu, Xinyao Fu, Dong Guo, Wei Ma, Shaohui Sun, Gonglei Shao, Zhen Zhou","doi":"10.1002/sus2.168","DOIUrl":"https://doi.org/10.1002/sus2.168","url":null,"abstract":"Two‐dimensional (2D) high‐entropy alloys (HEAs) have emerged as promising electrocatalysts due to the benefits of polymetallic coordination and robust electrical conductivity. However, the multiple elements in 2D HEAs pose challenges in achieving a uniform composition and maintaining a 2D limit morphology, complicating their structural characterization. Furthermore, even minor adjustments to the composition can significantly alter the properties of 2D HEAs, underscoring the need for a deeper understanding of their structure–property relationships to advance synthesis and application. Therefore, this review critically examines the intrinsic factors influencing synthesis methods and the practical applications of 2D HEAs in electrocatalysis for sustainable energy conversion. The urgency is emphasized for developing new synthesis techniques, enhancing advanced characterization methods, and gaining profound insights into the functional mechanisms of 2D HEAs.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"19 3","pages":"730 - 748"},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139274181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}