用于多模式智能温度控制的柔性弹性热调节器

SusMat Pub Date : 2023-11-27 DOI:10.1002/sus2.171
Can Chen, Huitao Yu, Tao Lai, Jun Guo, Mengmeng Qin, Zhiguo Qu, Yiyu Feng, Wei Feng
{"title":"用于多模式智能温度控制的柔性弹性热调节器","authors":"Can Chen, Huitao Yu, Tao Lai, Jun Guo, Mengmeng Qin, Zhiguo Qu, Yiyu Feng, Wei Feng","doi":"10.1002/sus2.171","DOIUrl":null,"url":null,"abstract":"As nonlinear thermal devices, thermal regulators can intelligently respond to temperature and control heat flow through changes in heat transfer capacities, which allows them to reduce energy consumption without external intervention. However, current thermal regulators generally based on high‐quality crystalline‐structure transitions are intrinsically rigid, which may cause structural damage and functional failure under mechanical strain; moreover, they are difficult to integrate into emerging soft electronic platforms. In this study, we develop a flexible, elastic thermal regulator based on the reversible thermally induced deformation of a liquid crystal elastomer/liquid metal (LCE/LM) composite foam. By adjusting the crosslinking densities, the LCE foam exhibits a high actuation strain of 121% with flexibility below the nematic–isotropic phase transition temperature (TNI) and hyperelasticity above TNI. The incorporation of LM results in a high thermal resistance switching ratio of 3.8 over a wide working temperature window of 60°C with good cycling stability. This feature originates from the synergistic effect of fragmentation and recombination of the internal LM network and lengthening and shortening of the bond line thickness. Furthermore, we fabricate a “grid window” utilizing photic‐thermal integrated thermal control, achieving a superior heat supply of 13.7°C at a light intensity of 180 mW/cm2 and a thermal protection of 43.4°C at 1200 mW/cm2. The proposed method meets the mechanical softness requirements of thermal regulator materials with multimode intelligent temperature control.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"37 1","pages":"843 - 858"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible and elastic thermal regulator for multimode intelligent temperature control\",\"authors\":\"Can Chen, Huitao Yu, Tao Lai, Jun Guo, Mengmeng Qin, Zhiguo Qu, Yiyu Feng, Wei Feng\",\"doi\":\"10.1002/sus2.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As nonlinear thermal devices, thermal regulators can intelligently respond to temperature and control heat flow through changes in heat transfer capacities, which allows them to reduce energy consumption without external intervention. However, current thermal regulators generally based on high‐quality crystalline‐structure transitions are intrinsically rigid, which may cause structural damage and functional failure under mechanical strain; moreover, they are difficult to integrate into emerging soft electronic platforms. In this study, we develop a flexible, elastic thermal regulator based on the reversible thermally induced deformation of a liquid crystal elastomer/liquid metal (LCE/LM) composite foam. By adjusting the crosslinking densities, the LCE foam exhibits a high actuation strain of 121% with flexibility below the nematic–isotropic phase transition temperature (TNI) and hyperelasticity above TNI. The incorporation of LM results in a high thermal resistance switching ratio of 3.8 over a wide working temperature window of 60°C with good cycling stability. This feature originates from the synergistic effect of fragmentation and recombination of the internal LM network and lengthening and shortening of the bond line thickness. Furthermore, we fabricate a “grid window” utilizing photic‐thermal integrated thermal control, achieving a superior heat supply of 13.7°C at a light intensity of 180 mW/cm2 and a thermal protection of 43.4°C at 1200 mW/cm2. The proposed method meets the mechanical softness requirements of thermal regulator materials with multimode intelligent temperature control.\",\"PeriodicalId\":506315,\"journal\":{\"name\":\"SusMat\",\"volume\":\"37 1\",\"pages\":\"843 - 858\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SusMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sus2.171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为非线性热器件,热调节器可对温度做出智能响应,并通过热传导能力的变化控制热流,从而无需外部干预即可降低能耗。然而,目前的热调节器一般基于高质量的晶体结构转换,本质上是刚性的,在机械应变下可能导致结构损坏和功能失效;此外,它们很难集成到新兴的软电子平台中。在这项研究中,我们基于液晶弹性体/液态金属(LCE/LM)复合泡沫的可逆热诱导变形,开发出一种柔性弹性热调节器。通过调整交联密度,液晶弹性体泡沫表现出 121% 的高致动应变,在向列-各向同性相变温度 (TNI) 以下具有柔韧性,在 TNI 以上具有超弹性。加入 LM 后,在 60°C 的宽工作温度窗口内,热阻开关比高达 3.8,并具有良好的循环稳定性。这一特性源于内部 LM 网络的破碎和重组以及键线厚度的延长和缩短的协同效应。此外,我们还利用光热集成热控技术制造了一种 "网格窗",在光照强度为 180 mW/cm2 时可实现 13.7°C 的卓越供热,在 1200 mW/cm2 时可实现 43.4°C 的热保护。所提出的方法满足了多模式智能温度控制对热调节材料机械柔软度的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and elastic thermal regulator for multimode intelligent temperature control
As nonlinear thermal devices, thermal regulators can intelligently respond to temperature and control heat flow through changes in heat transfer capacities, which allows them to reduce energy consumption without external intervention. However, current thermal regulators generally based on high‐quality crystalline‐structure transitions are intrinsically rigid, which may cause structural damage and functional failure under mechanical strain; moreover, they are difficult to integrate into emerging soft electronic platforms. In this study, we develop a flexible, elastic thermal regulator based on the reversible thermally induced deformation of a liquid crystal elastomer/liquid metal (LCE/LM) composite foam. By adjusting the crosslinking densities, the LCE foam exhibits a high actuation strain of 121% with flexibility below the nematic–isotropic phase transition temperature (TNI) and hyperelasticity above TNI. The incorporation of LM results in a high thermal resistance switching ratio of 3.8 over a wide working temperature window of 60°C with good cycling stability. This feature originates from the synergistic effect of fragmentation and recombination of the internal LM network and lengthening and shortening of the bond line thickness. Furthermore, we fabricate a “grid window” utilizing photic‐thermal integrated thermal control, achieving a superior heat supply of 13.7°C at a light intensity of 180 mW/cm2 and a thermal protection of 43.4°C at 1200 mW/cm2. The proposed method meets the mechanical softness requirements of thermal regulator materials with multimode intelligent temperature control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信