Xunliang Hu, Xiaoju Yang, Bingyi Song, Zhen Zhan, Ruixue Sun, Yantong Guo, Li‐Ming Yang, Xuan Yang, Chun Zhang, Irshad Hussain, Xiaoyang Wang, Bien Tan
{"title":"Sulfone‐functionalized stable molecular single crystals for photocatalytic hydrogen evolution","authors":"Xunliang Hu, Xiaoju Yang, Bingyi Song, Zhen Zhan, Ruixue Sun, Yantong Guo, Li‐Ming Yang, Xuan Yang, Chun Zhang, Irshad Hussain, Xiaoyang Wang, Bien Tan","doi":"10.1002/sus2.220","DOIUrl":"https://doi.org/10.1002/sus2.220","url":null,"abstract":"Highly crystalline organic semiconductors are ideal materials for photocatalytic hydrogen evolution in water splitting. However, the instability and complex synthesis processes of most reported organic molecule‐based photocatalysts restrict their applications. In this study, we introduce benzo [1,2‐b:4,5‐bʹ] bis [1] benzothiophene‐3,9‐dicarboxylic acid, 5,5,11,11‐tetraoxide (FSOCA), a highly crystalline, stable molecular crystal that is easy to synthesize and serves as an efficient photocatalyst for the hydrogen evolution reaction. FSOCA exhibits high efficiency in sacrificial hydrogen evolution reaction (760 µmol h−1, 76 mmol g−1 h−1 at 330 mW cm−2; 570 µmol h−1, 57 mmol g−1 h−1 at 250 mW cm−2), and FSOCA remains stable during photocatalysis for up to 400 h. Experiments and theoretical studies confirmed the presence of hydrogen bonds between the sulfone group and the sacrificial agent (ascorbic acid). This interaction significantly improved the oxidation reaction kinetics and boosted the photocatalytic performance. This study presents a scalable and convenient approach to synthesize highly crystalline, active, and stable organic photocatalysts with potential applications in large‐scale photocatalysis.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":" July","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141364427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wail Al Zoubi, Abdullah Al Mahmud, Farah Hazmatulhaq, MOHAMMAD R. THALJI, Stefano Leoni, Jee-Hyun Kang, Young Gun Ko
{"title":"Origin of the synergistic effects of bimetallic nanoparticles coupled with a metal oxide heterostructure for accelerating catalytic performance","authors":"Wail Al Zoubi, Abdullah Al Mahmud, Farah Hazmatulhaq, MOHAMMAD R. THALJI, Stefano Leoni, Jee-Hyun Kang, Young Gun Ko","doi":"10.1002/sus2.216","DOIUrl":"https://doi.org/10.1002/sus2.216","url":null,"abstract":"Precisely tuning bicomponent intimacy during reactions by traditional methods remains a formidable challenge in the fabrication of highly active and stable catalysts because of the difficulty in constructing well‐defined catalytic systems and the occurrence of agglomeration during assembly. To overcome these limitations, a PtRuPNiO@TiOx catalyst on a Ti plate was prepared by ultrasound‐assisted low‐voltage plasma electrolysis. This method involves the oxidation of pure Ti metal and co‐reduction of strong metals at 3000°C, followed by sonochemical ultrasonication under ambient conditions in an aqueous solution. The intimacy of the bimetals in PtRuPNiO@TiOx is tuned, and the metal nanoparticles are uniformly distributed on the porous titania coating via strong metal‒support interactions by leveraging the instantaneous high‐energy input from the plasma discharge and ultrasonic irradiation. The intimacy of PtRuPNiO@TiOx increases the electron density on the Pt surface. Consequently, the paired sites exhibit a high hydrogen evolution reaction activity (an overpotential of 220 mV at a current density of 10 mA cm−2 and Tafel slope of 186 mV dec−1), excellent activity in the hydrogenation of 4‐nitrophenol with a robust stability for up to 20 cycles, and the ability to contrast stated catalysts without ultrasonication and plasma electrolysis. This study facilitates industrially important reactions through synergistic chemical interactions.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":" 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141367569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Mei, Jiahui Zhou, Botao Zhang, Li Li, Feng Wu, Yongxin Huang, Renjie Chen
{"title":"Three‐dimensional electrically conductive–hydrophobic layer for stable Zn metal anodes","authors":"Yang Mei, Jiahui Zhou, Botao Zhang, Li Li, Feng Wu, Yongxin Huang, Renjie Chen","doi":"10.1002/sus2.197","DOIUrl":"https://doi.org/10.1002/sus2.197","url":null,"abstract":"The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces, resulting in the difficult application of aqueous Zn ion batteries (AZIBs). Hydrophobic protective layer possesses natural inhibition ability for side reactions. However, the conventional protective layer with plane structure is difficult to attain joint regulation of side reaction and Zn nucleation. Herein, a novel three‐dimensional (3D) electrically conductive and hydrophobic (3DECH) interface is elaborated to enable stable Zn anode. The as‐prepared 3DECH interface presents a uniform 3D morphology with hydrophobic property, large specific surface area, abundant zincophilic sites, and excellent electroconductivity. Therefore, the 3DECH interface achieves uniform nucleation and dendrite‐free deposition from synergetic benefits: (1) increased nucleation sites and reduced local current density through the special 3D structure and (2) uniform electric potential distribution and rapid Zn2+ transport due to the electroconductive alloy chemistry, thus coupling the hydrophobic property to obtain a highly reversible Zn anode. Consequently, the modified anode achieves a superior coulombic efficiency of 99.88% over 3500 cycles, and the pouch cells using modified anode and LiMn2O4 (LMO) cathode retain a capacity of 84 mAh g−1 after 700 cycles at a reasonable depth discharge of 36%, without dendrite piercing and “dead Zn.”","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"61 32","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140972130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Side‐chain symmetry‐breaking strategy on porphyrin donors enables high‐efficiency binary all‐small‐molecule organic solar cells","authors":"Wentao Zou, Xu Zhang, Haojiang Shen, Wenqing Zhang, Xinyue Jiang, Liaohui Ni, Can Shen, Longlong Geng, Xiaotao Hao, Yingguo Yang, Xunchang Wang, Renqiang Yang, Yanna Sun, Yuanyuan Kan, Ke Gao","doi":"10.1002/sus2.203","DOIUrl":"https://doi.org/10.1002/sus2.203","url":null,"abstract":"Side‐chain symmetry‐breaking strategy plays an important role in developing photovoltaic materials for high‐efficiency all‐small‐molecule organic solar cells (ASM OSCs). However, the power conversion efficiencies (PCEs) of ASM OSCs still lag behind their polymer‐based counterparts, which can be attributed to the difficulties in achieving favorable morphology. Herein, two asymmetric porphyrin‐based donors named DAPor‐DPP and DDPor‐DPP were synthesized, presenting stronger intermolecular interaction and closer molecular stacking compared to the symmetric ZnP‐TEH. The DAPor‐DPP:6TIC blend afforded a favorable morphology with nanoscale phase separation and more ordered molecular packing, thus achieving more efficient charge transportation and suppressed charge recombination. Consequently, the DAPor‐DPP:6TIC‐based device exhibited superior photovoltaic parameters, yielding a champion PCE of 16.62% higher than that of the DDPor‐DPP‐based device (14.96%). To our knowledge, 16.62% can be ranked as one of the highest PCE values among the binary ASM OSC filed. This work provides a prospective approach to address the challenge of ASM OSCs in improving film morphology and further achieving high efficiency via side‐chain symmetry‐breaking strategy, exhibiting great potential in constructing efficient ASM OSCs.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":" 89","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wang, Guohao Li, Guanshun Xie, Zhaohui Huang, Peng Zhang, Benhua Xu, Xiuqiang Xie, Nan Zhang
{"title":"Solvation structure design for stabilizing MXene in transition metal ion solutions","authors":"Jie Wang, Guohao Li, Guanshun Xie, Zhaohui Huang, Peng Zhang, Benhua Xu, Xiuqiang Xie, Nan Zhang","doi":"10.1002/sus2.202","DOIUrl":"https://doi.org/10.1002/sus2.202","url":null,"abstract":"Although MXene has attracted great interest in diverse fields, it is susceptible to oxidation in water (H2O) with transition metal ions such as Co2+, Fe2+, and Cu2+, which is pronounced at high temperatures. This impedes the preparation of MXene‐based composites and their functional applications. Here, this study revealed that Co2+ increases the maximum and average atomic charge of H in H2O to improve the reactivity of H2O, which leads to the fact that Co2+ catalyzes the oxidation of Ti3C2Tx MXene. Furthermore, the addition of N,N‐dimethyl formamide (DMF) reduces the H2O activity and improves the oxidation stability of Ti3C2Tx in the presence of Co2+ via preferentially forming coordination bonds with Co2+. This strategy is also effective in enhancing the oxidation tolerance of Ti3C2Tx to Fe2+ in H2O. Moreover, it is feasible to enhance the oxidation stability of Ti2CTx MXene in H2O with the existence of Co2+. By virtue of these, the CoO/Ti3C2Tx composite was successfully prepared without obvious Ti3C2Tx oxidation, which is desirable to harness the advantages of Ti3C2Tx as the complementary component for lithium‐ion batteries. This work provides a straightforward paradigm to enhance the oxidation resistance of MXene in H2O in the presence of transition metal ions and at high temperatures, which opens a new vista to use MXene for target applications.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia‐Xing An, Yu Meng, Hong-bo Zhang, Yuanzhi Zhu, Xiaohua Yu, Ju Rong, Peng Hou, Chang Liu, Huihang Cheng, Jin‐Cheng Li
{"title":"Three‐dimensional interconnected graphene network‐based high‐performance air electrode for rechargeable zinc‒air batteries","authors":"Jia‐Xing An, Yu Meng, Hong-bo Zhang, Yuanzhi Zhu, Xiaohua Yu, Ju Rong, Peng Hou, Chang Liu, Huihang Cheng, Jin‐Cheng Li","doi":"10.1002/sus2.201","DOIUrl":"https://doi.org/10.1002/sus2.201","url":null,"abstract":"Although zinc‒air batteries (ZABs) are regarded as one of the most prospective energy storage devices, their practical application has been restricted by poor air electrode performance. Herein, we developed a free‐standing air electrode that is fabricated on the basis of a multifunctional three‐dimensional interconnected graphene network. Specifically, a three‐dimensional interconnected graphene network with fast mass and electron transport ability, prepared by catalyzing growth of graphene foam on nickel foam and then filling reduced graphene oxide into the pores of graphene foam, is used to anchor iron phthalocyanine molecules with atomic Fe‒N4 sites for boosting the oxygen reduction during discharging and nanosized FeNi hydroxides for accelerating the oxygen evolution during charging. As a result, the obtained air electrode exhibited an ultra‐small electrocatalytic overpotential of 0.603 V for oxygen reactions, a high peak power density of 220.2 mW cm‒2, and a small and stable charge‒discharge voltage gap of 0.70 V at 10 mA cm‒2 after 1136 cycles. Furthermore, in situ Raman spectroscopy together with theoretical calculations confirmed that phase transformation of FeNi hydroxides takes place from α‐Ni(OH)x to β‐Ni(OH)x to γ‐Ni(3+δ)+OOH for the oxygen evolution reaction and Ni is the active center while Fe enhances the activity of Ni active sites.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":" 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140999915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in high‐temperature operatable triboelectric nanogenerator","authors":"Ruirui Cao, Ying Liu, Huili Li, Zhitao Shen, Fumin Li, Xiaoyong Jia, Chong Chen, Rong Liu, Caiqin Luo, Wensheng Yang, Rongrong Bao, Caofeng Pan","doi":"10.1002/sus2.196","DOIUrl":"https://doi.org/10.1002/sus2.196","url":null,"abstract":"The triboelectric nanogenerator (TENG) offers a novel approach to harness mechanical energy continuously and sustainably. It has emerged as a leading technology for converting mechanical energy into electricity. The demand for self‐powered wearable microelectronics and energy generation in extreme conditions underscores the need for efficient high‐temperature operatable TENGs (HTO‐TENGs). However, the operating environment temperature not only affects the storage and dissipation of electrons during triboelectrification, leading to decreased output performance of TENG and instability at high temperatures, but also damage to the mechanical stability and effective defects in most tribo‐materials, resulting in a further reduction in TENG's effective output power. Moreover, the unstable material properties of the triboelectric layer at high temperatures also restrict the use of the TENG in harsh environments. Therefore, it is imperative to consider the structural durability and electrical output stability of TENG when applying it in challenging working environments. This review aims to bridge this gap by providing a comprehensive overview of the current state and research advancements in HTO‐TENG for the first time. Finally, this review presents insights into future research prospects and proposes design strategies to facilitate the rapid development of the field.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"11 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding and unveiling the electro‐chemo‐mechanical behavior in solid‐state batteries","authors":"Yunlei Zhong, Xia Zhang, Yong Zhang, Peng Jia, Yuebin Xi, Lixing Kang, Zhenjiang Yu","doi":"10.1002/sus2.190","DOIUrl":"https://doi.org/10.1002/sus2.190","url":null,"abstract":"Solid‐state batteries (SSBs) are attracting growing interest as long‐lasting, thermally resilient, and high‐safe energy storage systems. As an emerging area of battery chemistry, there are many issues with SSBs, including strongly reductive lithium anodes, oxidized cathodes (state of charge), the thermodynamic stability limits of solid‐state electrolytes (SSEs), and the ubiquitous and critical interfaces. In this Review, we provided an overview of the main obstacles in the development of SSBs, such as the lithium anode|SSEs interface, the cathode|SSEs interface, lithium‐ion transport in the SSEs, and the root origin of lithium intrusions, as well as the safety issues caused by the dendrites. Understanding and overcoming these obstacles are crucial but also extremely challenging as the localized and buried nature of the intimate contact between electrode and SSEs makes direct detection difficult. We reviewed advanced characterization techniques and discussed the complex ion/electron‐transport mechanism that have been plaguing electrochemists. Finally, we focused on studying and revealing the coupled electro‐chemo‐mechanical behavior occurring in the lithium anode, cathode, SSEs, and beyond.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"30 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140080531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacial engineering for high‐performance garnet‐based solid‐state lithium batteries","authors":"Lingchen Wang, Jiaxin Wu, Chengshuai Bao, Zichang You, Yan Lu, Zhaoyin Wen","doi":"10.1002/sus2.187","DOIUrl":"https://doi.org/10.1002/sus2.187","url":null,"abstract":"Solid‐state batteries represent the future of energy storage technology, offering improved safety and energy density. Garnet‐type Li7La3Zr2O12 (LLZO) solid‐state electrolytes‐based solid‐state lithium batteries (SSLBs) stand out for their appealing material properties and chemical stability. Yet, their successful deployment depends on conquering interfacial challenges. This review article primarily focuses on the advancement of interfacial engineering for LLZO‐based SSLBs. We commence with a concise introduction to solid‐state electrolytes and a discussion of the challenges tied to interfacial properties in LLZO‐based SSLBs. We deeply explore the correlations between structure and properties and the design principles vital for achieving an ideal electrode/electrolyte interface. Subsequently, we delve into the latest advancements and strategies dedicated to overcoming these challenges, with designated sections on cathode and anode interface design. In the end, we share our insights into the advancements and opportunities for interface design in realizing the full potential of LLZO‐based SSLBs, ultimately contributing to the development of safe and high‐performance energy storage solutions.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"59 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139778199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyi Feng, Yang Feng, Fangfang Fan, Dezhao Deng, Han Dong, Shude Liu, Ling Kang, Seong Chan Jun, Ling Wang, Jing Zhu, L. Dai, Zhangxing He
{"title":"Functionalization design of zinc anode for advanced aqueous zinc‐ion batteries","authors":"Ziyi Feng, Yang Feng, Fangfang Fan, Dezhao Deng, Han Dong, Shude Liu, Ling Kang, Seong Chan Jun, Ling Wang, Jing Zhu, L. Dai, Zhangxing He","doi":"10.1002/sus2.184","DOIUrl":"https://doi.org/10.1002/sus2.184","url":null,"abstract":"Rechargeable aqueous zinc‐ion batteries (AZIBs) offer high energy density, low cost, and are environmentally friendly, rendering them potential energy storage devices. However, dendrite growth on the zinc anode and numerous side reactions during operation challenge their commercialization. Recent advancements have introduced various materials for the functionalization of zinc anodes. These developments effectively mitigate the performance degradation of zinc anode, enhancing both its cycle stability and the overall performance of AZIBs. Herein, the construction of functionalized zinc anodes is discussed, current materials (including organic, inorganic and their composites) for modified zinc anodes are categorized, and the protective mechanism behind functionalized zinc anodes is analyzed. The study concludes by outlining the characteristics of materials suitable for dendritic‐free zinc anode construction and the prospects for future development directions of functionalized zinc anodes in AZIBs.","PeriodicalId":506315,"journal":{"name":"SusMat","volume":"744 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139836879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}