Kyle Lammers , Kaixiang Zhang , Keyi Zhu , Pengyu Chu , Zhaojian Li , Renfu Lu
{"title":"Development and evaluation of a dual-arm robotic apple harvesting system","authors":"Kyle Lammers , Kaixiang Zhang , Keyi Zhu , Pengyu Chu , Zhaojian Li , Renfu Lu","doi":"10.1016/j.compag.2024.109586","DOIUrl":"10.1016/j.compag.2024.109586","url":null,"abstract":"<div><div>Harvesting labor is the single largest cost in apple production in the U.S. Increased cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this paper, we present the development and evaluation of a new dual-arm robotic apple harvesting system. The system hardware mainly consists of a perception component, two four-degree-of-freedom manipulators, a centralized vacuum system, and a fruit handling and bin filling component designed for the collection and transportation of picked fruits. Synergistic functionalities for automated apple harvesting were achieved through the development of software algorithms. In particular, an updated perception system based on dual-laser scanning was proposed to enable sequential localization of apples for the dual-arm robotic system. A sophisticated planning scheme was devised to coordinate the movement of the two manipulators, allowing them to approach the fruit effectively and share a centralized vacuum system for efficient fruit detachment. The robotic system has been evaluated through field trials in a challenging apple orchard with complex, dense canopy, and it achieved 60% successful picking rate. The dual-arm coordination algorithm resulted in 9% to 34% harvest time improvements, compared to the 1-arm robotic system design. The new dual-arm robotic system is compact in design and dexterous in movement, and with further improvements in hardware and software, it holds great potential for providing a commercially viable harvesting automation solution for the apple industry</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109586"},"PeriodicalIF":7.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos J. Cortés , Nelson O. Moraga , Constanza Jana , Germán E. Merino
{"title":"Effect of hydraulic configuration on lettuce growth in hydroponic bed using Deep water culture technique (DWC)","authors":"Carlos J. Cortés , Nelson O. Moraga , Constanza Jana , Germán E. Merino","doi":"10.1016/j.compag.2024.109634","DOIUrl":"10.1016/j.compag.2024.109634","url":null,"abstract":"<div><div>Experiments and computational modeling were developed to determine the effect of different types of hydraulic configurations on water quality variables to improve growth of lettuce in hydroponic beds. The variants in the hydraulic configurations consider water recirculation in hydroponic modules using Deep Water Culture technique (DWC), for continuous (CWF) and pulsatile water flow (PWF) using either one or three water flow inlets (TWF). These data were used to generate fluid mechanics and heat transfer models for the described hydraulic configurations to assess the effect of the hydraulic configuration on lettuce growth. The results obtained from the mathematical model by the finite volume method allowed to explain the influence of water flow and temperature on the rate of growing for lettuce during summer and autumn in the southern hemisphere. The main findings obtained from the hybrid numerical – experimental model to achieve high lettuce yield were that the number of water inlets has an effect on influenced nutrient transport and water quality variation, where the variant with three water inlets (TWF), and the climatic condition for autumn achieve better plant growth performance than summer. Computational modelling of fluid mechanics and heat transfer allowed to predict the variation of water quality variables in DWC bed, being a suitable technique with a high potential for achieving new accurate agriculture standards.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109634"},"PeriodicalIF":7.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi-Chen Chen , Jen-Cheng Wang , Mu-Hwa Lee , An-Chi Liu , Joe-Air Jiang
{"title":"Enhanced detection of mango leaf diseases in field environments using MSMP-CNN and transfer learning","authors":"Yi-Chen Chen , Jen-Cheng Wang , Mu-Hwa Lee , An-Chi Liu , Joe-Air Jiang","doi":"10.1016/j.compag.2024.109636","DOIUrl":"10.1016/j.compag.2024.109636","url":null,"abstract":"<div><div>Mango trees affected by various diseases often exhibit distinctive leaf symptoms. Accurate and timely diagnosis is crucial for mango cultivation. Deep learning algorithms provide a viable solution for precisely detection of mango leaf diseases. However, two main challenges exist: environmental interference and the difficulty of collecting leaf image data from the field. To address these challenges, this study introduces a multi-scale and multi-pooling convolutional neural network (MSMP-CNN) model. The proposed model undergoes a pre-training phase, followed by transfer learning and fine-tuning, and ultimately focuses on identifying mango leaf diseases using real-world images. This model exhibits outstanding performance in identifying various mango leaf diseases. The model achieved an accuracy of 95 % on its own. After being enhanced by transfer learning and find-tuning, the model achieved an impressive accuracy of 98.5 %. To compare the classification performance with and without transfer learning and fine-tuning, t-distributed stochastic neighbor embedding (t-SNE) plots were used. Class activation mapping (CAM) heatmaps were also utilized to highlight class-specific regions of images, helping verify whether the model focused on the appropriate parts of the image for disease identification. These findings underscore the strong potential of the model combining with transfer learning and fine-tuning to advance mango leaf disease detection. In the future, the proposed model will evolve into a real-time, precise diagnostic system for mango leaf diseases, thereby transforming mango cultivation management from precision farming to smart agriculture.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109636"},"PeriodicalIF":7.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdullah Alamoodi , Salem Garfan , Muhammet Deveci , O.S. Albahri , A.S. Albahri , Salman Yussof , Raad Z. Homod , Iman Mohamad Sharaf , Sarbast Moslem
{"title":"Evaluating agriculture 4.0 decision support systems based on hyperbolic fuzzy-weighted zero-inconsistency combined with combinative distance-based assessment","authors":"Abdullah Alamoodi , Salem Garfan , Muhammet Deveci , O.S. Albahri , A.S. Albahri , Salman Yussof , Raad Z. Homod , Iman Mohamad Sharaf , Sarbast Moslem","doi":"10.1016/j.compag.2024.109618","DOIUrl":"10.1016/j.compag.2024.109618","url":null,"abstract":"<div><div>Agriculture 4.0 plays a crucial role in shaping sustainable cities and societies by revolutionizing urban food systems. By incorporating advanced technologies like precision farming, vertical gardening, and data analytics, Agriculture 4.0 improves local food production, reduces food transportation, and optimizes resource utilization. This paper introduces an innovative approach using Multi-Criteria Decision Making (MCDM) to assess Agriculture 4.0 Decision Support Systems (ADSS), contributing significantly to the selection of optimal systems that can drive sustainability in smart agriculture. The novelty of this research lies in developing a comprehensive evaluation framework that extends the hyperbolic fuzzy-weighted zero-inconsistency method for criteria weighting, combined with the combinative distance-based assessment method for benchmarking ADSS. The assessment matrix evaluates 13 ADSS across eight key criteria, including “<em>accessibility</em>,” “<em>re-planning</em>,” “<em>expert knowledge</em>,” “<em>interoperability</em>,” “<em>scalability</em>,” “<em>uncertainty and dynamic factors</em>,” “<em>prediction and forecast</em>,” and “<em>historical data analysis</em>”. Results from the hyperbolic fuzzy-weighted zero-inconsistency approach highlight “<em>re-planning</em>” (<em>0.143</em>) and “<em>prediction and forecast</em>” (<em>0.140</em>) as the most significant criteria, while “<em>expert knowledge</em>” ranked lowest (<em>0.113</em>). In the combinative distance-based assessment, the system labelled “OCCASION” achieved the highest score (<em>3.843</em>), positioning it as the most favourable ADSS, whereas the “MOLP-based beef supply chain” system scored lowest <em>(−3.519</em>). Sensitivity analysis, conducted using varying sets of weights, confirms the robustness and reliability of the proposed approach. This research provides a powerful decision-making tool that can guide stakeholders in selecting the best ADSS, ultimately promoting sustainability and resource optimization in Agriculture 4.0. The findings have important implications for farmers, agribusiness, and smart agriculture, demonstrating the potential of the methodology to enhance decision-making processes in a critical sector.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109618"},"PeriodicalIF":7.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jia-Yong Song , Ze-Sheng Qin , Chang-Wen Xue , Li-Feng Bian , Chen Yang
{"title":"A monochrome pipelined HMI system for foodborne microorganisms testing","authors":"Jia-Yong Song , Ze-Sheng Qin , Chang-Wen Xue , Li-Feng Bian , Chen Yang","doi":"10.1016/j.compag.2024.109650","DOIUrl":"10.1016/j.compag.2024.109650","url":null,"abstract":"<div><div>Hyperspectral microscopy imaging (HMI) is an efficient and non-destructive method to detect microbial contaminants in food, as it can provide both spatial morphology and spectral signature. Aims at reducing thermal effect, low cost, and improving spectral resolution in testing, a pipeline-operated LEDs monochromatic illumination mode is proposed, which integrates the design concepts of both grating-based and LED-based HMI systems. By design of the LED set, shared grating monochromatic optical path, and coordinated control system, an HMI system has been developed that could obtain the hyperspectral data cube with 101 bands in 400–700 <em>nm</em>. Hyperspectral datasets of three species of Aspergillus are prepared using the prototype, and efficient results have been achieved in the training and testing of classical classification algorithms (1D-CNN (97.33 %), k-NN (96.33 %), SVM (97.67 %) and ResNet-18 (95.67 %)). The results demonstrate that the proposed monochromatic illumination mode and associated system are potential detection solutions for foodborne microbial contaminants with low-cost and high-accurate.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109650"},"PeriodicalIF":7.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunsong Jia, Li’ao Qu, Shuaiqi Huang, Xin Chen, Xiang Li
{"title":"Better prediction of greenhouse extreme temperature base on improved loss function","authors":"Yunsong Jia, Li’ao Qu, Shuaiqi Huang, Xin Chen, Xiang Li","doi":"10.1016/j.compag.2024.109581","DOIUrl":"10.1016/j.compag.2024.109581","url":null,"abstract":"<div><div>Extreme greenhouse temperatures can lead to irreversible damage to crops inside the greenhouse, resulting in yield reduction and even crop failure. Predicting such extreme temperatures and intervening in advance can mitigate the economic losses caused by these conditions. Existing models demonstrate relatively accurate predictions within the normal temperature range of the greenhouse, but they exhibit significant deviations when forecasting extreme temperature intervals, leading to narrow temperature prediction ranges, which hinders their ability to address the aforementioned scenarios effectively. In this paper, we propose a novel approach that combines the weighted idea for handling class imbalance and introduces a loss function suitable for multiple models. By ensuring the accuracy of normal temperature predictions, our proposed method significantly enhances the precision of predicting extreme greenhouse temperatures and expands the model’s temperature prediction range. Experimental results demonstrate the effectiveness of this loss function in various models such as LGB (LightGBM), LSTM (Long Short-Term Memory), and BPNN (Backpropagation Neural Network), leading to a significant reduction in false positive and false negative predictions of extreme temperatures.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109581"},"PeriodicalIF":7.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinting Ding , Wei Hao , Kui Liu , Binbin Wang , Zhi He , Weixin Li , Yongjie Cui , Qichang Yang
{"title":"Development of a universal plug tray seeder for small seeds based on electrostatic adsorption","authors":"Xinting Ding , Wei Hao , Kui Liu , Binbin Wang , Zhi He , Weixin Li , Yongjie Cui , Qichang Yang","doi":"10.1016/j.compag.2024.109651","DOIUrl":"10.1016/j.compag.2024.109651","url":null,"abstract":"<div><div>Addressing the limitations of the traditional air suction plug tray seeder regarding versatility, clogging, noise, and energy consumption, a novel plug tray seeding method suitable for a broader range of small seed sizes has been proposed. A universal plug tray seeder has also been designed based on electrostatic adsorption for small seeds. Key factors affecting seed electrostatic adsorption were analyzed through electrostatic simulation, determining the optimal manufacturing method for the suction needle and the best range for the electrostatic voltage. Leveraging the theory of granular dynamics, a seed vibration box was designed using the principle of microphone vibration to enhance seed flowability and reduce the multiple seeding rate. Furthermore, the control system achieved seed recognition based on YOLOv8n and adaptive matching of seeding parameters, enhancing the universality of the seeder. The seeder was optimized and validated through practical experiments, with a comparative analysis of energy consumption and sound intensity conducted. The results indicated that the electrostatic suction needle, made with a single copper electrode of 1 mm diameter and coated with a 1 mm thick planar epoxy resin adsorption layer, along with an electrostatic voltage of 5 ∼ 10 kV, could effectively adsorb seeds. The vibration box significantly improved the seeding effect by vibrating seeds of tomato, pepper, and muskmelon at frequencies of 10 ∼ 25 Hz, and seeds of broccoli, cabbage, and eggplant at frequencies of 30 ∼ 50 Hz. The combined action of the electrostatic suction needle and the vibrating seed box resulted in an 83.20 % reduction in energy consumption and a significant decrease in sound intensity. Although the single seeding rate for muskmelon and cabbage seeds slightly decreased due to higher rates of leakage seeding and multiple seeding, the single seeding rate for other seeds remained around 90 %. This study provides a theoretical foundation for the universal seeding method of small seeds and offers significant reference value for the design of low-energy, low-noise plug tray seeders.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109651"},"PeriodicalIF":7.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jibo Yue , Jian Wang , Zhaoying Zhang , Changchun Li , Hao Yang , Haikuan Feng , Wei Guo
{"title":"Estimating crop leaf area index and chlorophyll content using a deep learning-based hyperspectral analysis method","authors":"Jibo Yue , Jian Wang , Zhaoying Zhang , Changchun Li , Hao Yang , Haikuan Feng , Wei Guo","doi":"10.1016/j.compag.2024.109653","DOIUrl":"10.1016/j.compag.2024.109653","url":null,"abstract":"<div><div>The crop leaf area index (LAI) and leaf chlorophyll content (LCC) are essential indicators that reflect crop growth status, and their accurate estimation is helpful for agricultural management decision-making. Traditional hyperspectral estimation methods for crop LAI and LCC from canopy spectra face challenges due to intricate soil backgrounds, canopy structural environments, and varying observational conditions. This paper proposes an LAI and LCC estimation method based on hyperspectral remote sensing, a radiative transfer model (RTM), and a leaf area index and leaf chlorophyll content deep learning network (LACNet). The LACNet architecture was developed utilizing deep and shallow feature fusion, blocks, and a hyperspectral-to-image transform (HIT) concept, aiming to improve LAI and LCC estimation. We used a field-based spectrometer to collect a dataset comprising 1,234 spectral measurements across five crop types: wheat, maize, potato, rice, and soybean. We used properties optique spectrales des feuilles and scattering by arbitrarily inclined leaves (PROSAIL) to generate a simulated spectra dataset (n = 145,152) representing complex farmland conditions for the five abovementioned crops, considering the variations in soil type, soil moisture, LAI, LCC, etc. The LACNet deep learning model sequentially uses RTM simulated and field-based spectra datasets for training, achieving higher universality and validation accuracy. We also analyzed the LACNet model’s interpretability for LAI and LCC estimation based on the gradient-weighted class activation mapping theory. From our research, we drew the following conclusions: (1) The shallow network features are sensitive to the LAI and LCC in the entire visible band, consistent with our correlation analysis results, while the deep network sensitive areas are mainly concentrated in the RE + VIS and RE + NIR regions of the HIT images. (2) The LACNet deep learning model (LAI: coefficient of determination (<em>R<sup>2</sup></em>) = 0.770, root mean square error (RMSE) = 0.968 m<sup>2</sup>/m<sup>2</sup>; LCC: <em>R</em><sup>2</sup> = 0.765, RMSE = 4.547 Dualex readings) can provide higher crop LAI and LCC estimation accuracy than widely used spectral feature and statistical regression methods (LCC: <em>R</em><sup>2</sup> = 0.491–0.620, RMSE = 5.804–6.691 Dualex readings; LAI: <em>R</em><sup>2</sup> = 0.476–0.716, RMSE = 1.089–1.482 m<sup>2</sup>/m<sup>2</sup>). The results of this study highlight the potential of the LACNet deep learning model as an effective and robust tool for accurately estimating crop LAI and LCC.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109653"},"PeriodicalIF":7.7,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuan Li , Dongxing Zhang , Li Yang , Tao Cui , Xiantao He , Zhimin Li , Jiaqi Dong , Shulun Xing , Yeyuan Jiang , Jiyuan Liang
{"title":"Research on high-speed and clean production with a high-speed centrifugal maize precision seed metering device featuring variable hole insert numbers","authors":"Chuan Li , Dongxing Zhang , Li Yang , Tao Cui , Xiantao He , Zhimin Li , Jiaqi Dong , Shulun Xing , Yeyuan Jiang , Jiyuan Liang","doi":"10.1016/j.compag.2024.109620","DOIUrl":"10.1016/j.compag.2024.109620","url":null,"abstract":"<div><div>Traditional pneumatic seed metering devices rely on air pressure for seed filling and carrying, resulting in high energy consumption and limited seeding speed. While centrifugal seed metering devices can achieve high-speed seeding, they have a narrow optimal seeding speed range, making low-speed seeding difficult. In this study, the number of hole inserts in a high-speed centrifugal precision seed metering device for maize was set to 2, 4, 6, and 8, enabling precision seeding at higher speeds and across a broader speed range. Different agitator wheel structures were designed based on the number of hole inserts. The motion characteristics of the gas and seeds were analyzed using a combination of Discrete Element Method and Computational Fluid Dynamics to determine the optimal agitator wheel structure. Bench test results indicated that the optimal seeding speed ranges for 2, 4, 6, and 8 hole inserts were 6–9 km/h, 12–18 km/h, 18–27 km/h, and 24–36 km/h, respectively. With 8 hole inserts, the maximum seeding speed reached 36 km/h, achieving a miss rate of 2.75 %, a repeat rate of 3.76 %, and a qualification rate of 93.49 %. The energy consumption of the high-speed centrifugal maize precision seed metering device during seeding was less than 411.71 kJ/ha, which is less than 9 % of the energy consumed per hectare by pneumatic seed metering devices. Additionally, the higher the seeding speed, the lower the energy consumption per hectare. At a seeding speed of 36 km/h, the energy consumption was 90.08 kJ/ha. Compared to pneumatic seed metering devices, the high-speed centrifugal maize precision seed metering device offers higher seeding speeds and lower energy consumption, enabling high-speed and clean production.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109620"},"PeriodicalIF":7.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peifeng Ma , Aibin Zhu , Yihao Chen , Yao Tu , Han Mao , Jiyuan Song , Xin Wang , Sheng Su , Dangchao Li , Xia Dong
{"title":"Multi objective motion planning of fruit harvesting manipulator based on improved BIT* algorithm","authors":"Peifeng Ma , Aibin Zhu , Yihao Chen , Yao Tu , Han Mao , Jiyuan Song , Xin Wang , Sheng Su , Dangchao Li , Xia Dong","doi":"10.1016/j.compag.2024.109567","DOIUrl":"10.1016/j.compag.2024.109567","url":null,"abstract":"<div><div>The primary challenge for fruit-harvesting robots in unstructured orchard environments lies in achieving fast and accurate fruit picking while avoiding obstacles like branches. This paper introduces a rapid and efficient multi-objective motion planning method based on the improved BIT* algorithm. Two depth cameras are employed to acquire the locations of both targets and obstacles, and an obstacle map of the harvesting environment is generated using the octree method. For collision detection, a combination of bounding box and grid-based techniques is applied. The proposed bidirectional BIT* (Bi-BIT*) algorithm builds forward and backward trees simultaneously during initialization, alternating searches to reduce the time required for the initial solution. The manipulator’s joint paths are interpolated using a quintic polynomial, and a multi-objective optimization problem is solved to achieve a smooth joint motion trajectory while minimizing energy consumption and pulsation. Both two-dimensional and three-dimensional simulations demonstrate that the Bi-BIT* algorithm consistently outperforms three other algorithms, achieving the highest overall scores. In the harvesting experiment of Scenario 1, the Bi-BIT* algorithm had an average execution time of 7.32 s—36.4% faster than the Informed RRT* algorithm, 19.0% faster than the RRT-Connect algorithm, and 28.7% faster than the BIT* algorithm. Additionally, the Bi-BIT* algorithm achieved a 96% planning success rate and an 84% execution success rate, surpassing the other three algorithms. In Experiment Scenario 2, the Bi-BIT* algorithm had an average execution time of 8.59 s, which is 41.0% faster than the Informed RRT* algorithm, 6.3% faster than the RRT-Connect algorithm, and 19.5% faster than the BIT* algorithm. Furthermore, the Bi-BIT* algorithm demonstrated superior planning and execution success rates of 92% and 88%, respectively, compared to the other algorithms. These experimental results confirm that the proposed multi-objective motion planning method enables the harvesting manipulator to avoid obstacles efficiently and accurately, completing the harvesting task with high performance.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109567"},"PeriodicalIF":7.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}