Xiaofang Liao, Hongwei Li, Aziz Khan, Yanhong Zhao, Mian Ahmad Raza, Bujin Zhou, Ruiyang Zhou, Wenhuan Hou, Xingfu Tang
{"title":"Nucleo-cytoplasmic interactions affect the 5' terminal transcription of mitochondrial genes between the isonuclear CMS line UG93A and its maintainer line UG93B of kenaf (Hibiscus cannabinus).","authors":"Xiaofang Liao, Hongwei Li, Aziz Khan, Yanhong Zhao, Mian Ahmad Raza, Bujin Zhou, Ruiyang Zhou, Wenhuan Hou, Xingfu Tang","doi":"10.1007/s00427-021-00682-z","DOIUrl":"https://doi.org/10.1007/s00427-021-00682-z","url":null,"abstract":"<p><p>Gene expression and translation in plant mitochondria remain poorly understood due to the complicated transcription of its mRNA. In this study, we report the 5' and 3' RNA extremities and promoters of five mitochondrial genes, atp1, atp4, atp6, atp9, and cox3. The results reveal that four genes (atp1, atp4, atp6, and cox3) are transcribed from multiple initiation sites but with a uniform transcript at the 3' end, indicating that heterogeneity of the 5' end is a common feature in the transcription of kenaf mitochondrial genes. Furthermore, we found that the transcription initiation sites of these four genes are significantly different in UG93A, UG93B, and the F<sub>1</sub> hybrid. These data indicate that nuclear loci and unknown transcription factors within the mitochondria of different cytoplasmic types may be involved in mitochondrial transcription. Promoter architecture analysis showed that the promoter core sequences are conserved in the kenaf mitochondrial genome but are highly divergent, suggesting that these elements are essential for the promoter activity of mitochondrial genes in kenaf. Our results reveal that the heterogeneity of the 5' end and uniformity at the 3' end are common transcriptional features of mitochondrial genes. These data provide essential information for understanding the transcription of mitochondrial genes in kenaf and can be used as a reference for other plants.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 5-6","pages":"119-130"},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39684941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early embryonic development of Bombyx.","authors":"Hajime Nakao","doi":"10.1007/s00427-021-00679-8","DOIUrl":"https://doi.org/10.1007/s00427-021-00679-8","url":null,"abstract":"<p><p>Decades have passed since the early molecular embryogenesis of Drosophila melanogaster was outlined. During this period, the molecular mechanisms underlying early embryonic development in other insects, particularly the flour beetle, Tribolium castaneum, have been described in more detail. The information clearly demonstrated that Drosophila embryogenesis is not representative of other insects and has highly distinctive characteristics. At the same time, this new data has been gradually clarifying ancestral operating mechanisms. The silk moth, Bombyx mori, is a lepidopteran insect and, as a representative of the order, has many unique characteristics found in early embryonic development that have not been identified in other insect groups. Herein, some of these characteristics are introduced and discussed in the context of recent information obtained from other insects.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 5-6","pages":"95-107"},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00679-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39215563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of GSK3β inhibition in the regeneration of Syllis malaquini (Syllidae, Annelida).","authors":"Rannyele Passos Ribeiro, M Teresa Aguado","doi":"10.1007/s00427-021-00681-0","DOIUrl":"https://doi.org/10.1007/s00427-021-00681-0","url":null,"abstract":"<p><p>The Wnt/β-catenin signaling pathway has been widely associated to the reestablishment of anteroposterior body polarities in the embryonic development and regeneration in animals. For instance, in annelids, cellular proliferation, wound healing, and blastema development can be affected when this pathway is disrupted. However, very little is known about the genetic regulatory processes involved in these anomalies. Here, we investigate the morphological effects of 1-azakenpaullone, a pharmacological inhibitor of GSK3β that is supposed to over-activate the Wnt/β-catenin pathway, during the anterior and posterior regeneration of the annelid Syllis malaquini. The results showed that high concentrations of 1-azakenpaullone affect the stages of blastema differentiation and resegmentation. Therefore, GSK3β-associated gene regulatory networks are candidate to investigate the genetic mechanisms involved in the regular course of S. malaquini regeneration.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 5-6","pages":"141-146"},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39507214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Darko D Cotoras, Pedro de S Castanheira, Prashant P Sharma
{"title":"Implications of a cheliceral axial duplication in Tetragnatha versicolor (Araneae: Tetragnathidae) for arachnid deuterocerebral appendage development.","authors":"Darko D Cotoras, Pedro de S Castanheira, Prashant P Sharma","doi":"10.1007/s00427-021-00678-9","DOIUrl":"https://doi.org/10.1007/s00427-021-00678-9","url":null,"abstract":"<p><p>The homology of the arachnid chelicera with respect to other head appendages in Panarthropoda has long been debated. Gene expression data and the re-interpretation of early transitional fossils have supported the homology of the deutocerebrum and its associated appendages, implying a homology between primary antennae (mandibulates), chelicerae (euchelicerates), and chelifores (sea spiders). Nevertheless, comparatively little is known about the mechanistic basis of proximo-distal (PD) axis induction in chelicerates, much less the basis for cheliceral fate specification. Here, we describe a new cheliceral teratology in the spider Tetragnatha versicolor Walckenaer, 1841, which consists on a duplication of the PD axis of the left chelicera associated with a terminal secondary schistomely on the fang of the lower axis. This duplication offers clues as to potential shared mechanisms of PD axis formation in the chelicera. We review the state of knowledge on PD axis induction mechanisms in arthropods and identify elements of gene regulatory networks that are key for future functional experiments of appendage development in non-insect model systems. Such investigations would allow a better understanding of PD axis induction of modified and poorly studied arthropod limbs (e.g., chelicerae, chelifores, and ovigers).</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 5-6","pages":"131-139"},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00678-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39012251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential stress tolerance roles of barley germins and GLPs.","authors":"Elif Karlik","doi":"10.1007/s00427-021-00680-1","DOIUrl":"https://doi.org/10.1007/s00427-021-00680-1","url":null,"abstract":"<p><p>Germins and germin-like proteins (GLPs) known as germination markers are encoded by multigene families in several plant species, including barley. To date, functional analysis has revealed germins and GLPs are involved in diverse processes such as embryonic development and stress responses. The aim of this study was the analysis of barley germins and GLPs. In this study, 80 putative germins and GLPs have been identified in barley by using known 17 germins and GLP sequences. Analysis of germins and GLPs showed all germins and GLPs are distributed on all seven chromosomes that most of them spread through chromosome 3, 4 and 7 with 16, 18 and 12 proteins on each, respectively. The protein sizes varied between 185 and 335 amino acids, with an average length of 225 aa. Twelve conserved motifs were found. While germin motifs 1 and 3 were detected in all germins and GLPs, some motifs were found to be related to signalization. Interestingly, protein-protein interaction analysis demonstrated some GLPs are associated with RAB6-interacting golgin, oligopeptide transmembrane transporter activity, beta-glucuronidase activity, protein N-linked glycosylation, multi-pass membrane protein, and proteins containing zinc finger (Znf) domain and RING (really interesting new gene)-type zinc finger domains. Our findings suggest that barley germins and GLPs may have diverse functions that make them important candidates for crop improvement.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 5-6","pages":"109-118"},"PeriodicalIF":2.4,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39287510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masato Koseki, Nobuaki K Tanaka, Shigeyuki Koshikawa
{"title":"The color pattern inducing gene wingless is expressed in specific cell types of campaniform sensilla of a polka-dotted fruit fly, Drosophila guttifera.","authors":"Masato Koseki, Nobuaki K Tanaka, Shigeyuki Koshikawa","doi":"10.1007/s00427-021-00674-z","DOIUrl":"https://doi.org/10.1007/s00427-021-00674-z","url":null,"abstract":"<p><p>A polka-dotted fruit fly, Drosophila guttifera, has a unique pigmentation pattern on its wings and is used as a model for evo-devo studies exploring the mechanism of evolutionary gain of novel traits. In this species, a morphogen-encoding gene, wingless, is expressed in species-specific positions and induces a unique pigmentation pattern. To produce some of the pigmentation spots on wing veins, wingless is thought to be expressed in developing campaniform sensillum cells, but it was unknown which of the four cell types there express(es) wingless. Here we show that two of the cell types, dome cells and socket cells, express wingless, as indicated by in situ hybridization together with immunohistochemistry. This is a unique case in which non-neuronal SOP (sensory organ precursor) progeny cells produce Wingless as an inducer of pigmentation pattern formation. Our finding opens a path to clarifying the mechanism of evolutionary gain of a unique wingless expression pattern by analyzing gene regulation in dome cells and socket cells.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 3-4","pages":"85-93"},"PeriodicalIF":2.4,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00674-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25522725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression patterns of signalling molecules and transcription factors in the early rabbit embryo and their significance for modelling amniote axis formation.","authors":"Ruben Plöger, Christoph Viebahn","doi":"10.1007/s00427-021-00677-w","DOIUrl":"10.1007/s00427-021-00677-w","url":null,"abstract":"<p><p>The anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a 'global positioning system' for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative 'three-anchor-point model'. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears - together with a posterior-anterior gradient in wnt3 and eomes domains - in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the 'three-anchor-point model' for establishing the mammalian body plan.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 3-4","pages":"73-83"},"PeriodicalIF":2.4,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00677-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39004244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Morphological changes during the post-embryonic ontogeny of mesothelan spiders and aspects of character evolution in early spiders.","authors":"Thomas Huber, Carolin Haug","doi":"10.1007/s00427-021-00675-y","DOIUrl":"https://doi.org/10.1007/s00427-021-00675-y","url":null,"abstract":"<p><p>Most morphological studies focus on adult specimens, or if developmental studies are pursued, especially in Euarthropoda, they focus on embryonic development. Araneae (spiders) is one of these groups, in consequence with understudied post-embryonic development. Here we present aspects of the post-embryonic stages of different species of Mesothelae, sister group to the remaining spiders (when fossil species are not taken into account). We used different imaging methods and measured different external morphological structures to detect possible ontogenetic changes. One structure exhibiting post-embryonic changes is the chelicera. Here the significant change occurs between the last immature stage and the adult, yet only in males. For the spinnerets, we could not detect ontogenetic changes, but instead a high variability in length and width, probably due to their lack of pivot joints between the elements. The strongest morphological change during ontogeny occurred on the sternum, which begins with a rather roundish shape in the first stage and changes to being fairly elongate in shape in the last immature stages and the adult. This specific sternum shape only occurs in adults of mesothelan spiders, while opisthothelan spiders have a broader sternum also in the adult. We discuss our results in an evolutionary context, also taking into account recent finds of fossil spiders.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 3-4","pages":"47-56"},"PeriodicalIF":2.4,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00675-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38882717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evolutionary divergence of a Hoxa2b hindbrain enhancer in syngnathids mimics results of functional assays.","authors":"Allison M Fuiten, William A Cresko","doi":"10.1007/s00427-021-00676-x","DOIUrl":"https://doi.org/10.1007/s00427-021-00676-x","url":null,"abstract":"<p><p>Hoxa2 genes provide critical patterning signals during development, and their regulation and function have been extensively studied. We report a previously uncharacterized significant sequence divergence of a highly conserved hindbrain hoxa2b enhancer element in the family syngnathidae (pipefishes, seahorses, pipehorses, seadragons). We compared the hox cis-regulatory element variation in the Gulf pipefish and two species of seahorse against eight other species of fish, as well as human and mouse. We annotated the hoxa2b enhancer element binding sites across three species of seahorse, four species of pipefish, and one species of ghost pipefish. Finally, we performed in situ hybridization analysis of hoxa2b expression in Gulf pipefish embryos. We found that all syngnathid fish examined share a modified rhombomere 4 hoxa2b enhancer element, despite the fact that this element has been found to be highly conserved across all vertebrates examined previously. Binding element sequence motifs and spacing between binding elements have been modified for the hoxa2b enhancer in several species of pipefish and seahorse, and that the loss of the Prep/Meis binding site and further space shortening happened after ghost pipefish split from the rest of the syngnathid clade. We showed that expression of this gene in rhombomere 4 is lower relative to the surrounding rhombomeres in developing Gulf pipefish embryos, reflecting previously published functional tests for this enhancer. Our findings highlight the benefits of studying highly derived, diverse taxa for understanding of gene regulatory evolution and support the hypothesis that natural mutations can occur in deeply conserved pathways in ways potentially related to phenotypic diversity.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 3-4","pages":"57-71"},"PeriodicalIF":2.4,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00676-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38994384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agustina Pascual, Emiliano S Vilardo, Catalina Taibo, Julia Sabio Y García, Rolando Rivera Pomar
{"title":"Bicaudal C is required for the function of the follicular epithelium during oogenesis in Rhodnius prolixus.","authors":"Agustina Pascual, Emiliano S Vilardo, Catalina Taibo, Julia Sabio Y García, Rolando Rivera Pomar","doi":"10.1007/s00427-021-00673-0","DOIUrl":"https://doi.org/10.1007/s00427-021-00673-0","url":null,"abstract":"<p><p>The morphology and physiology of the oogenesis have been well studied in the vector of Chagas disease Rhodnius prolixus. However, the molecular interactions that regulate the process of egg formation, key for the reproductive cycle of the vector, is still largely unknown. In order to understand the molecular and cellular basis of the oogenesis, we examined the function of the gene Bicaudal C (BicC) during oogenesis and early development of R. prolixus. We show that R. prolixus BicC (Rp-BicC) gene is expressed in the germarium, with cytoplasmic distribution, as well as in the follicular epithelium of the developing oocytes. RNAi silencing of Rp-BicC resulted in sterile females that lay few, small, non-viable eggs. The ovaries are reduced in size and show a disarray of the follicular epithelium. This indicates that Rp-BicC has a central role in the regulation of oogenesis. Although the follicular cells are able to form the chorion, the uptake of vitelline by the oocytes is compromised. We show evidence that the polarity of the follicular epithelium and the endocytic pathway, which are crucial for the proper yolk deposition, are affected. This study provides insights into the molecular mechanisms underlying oocyte development and show that Rp-BicC is important for de developmental of the egg and, therefore, a key player in the reproduction of this insect.</p>","PeriodicalId":50588,"journal":{"name":"Development Genes and Evolution","volume":"231 1-2","pages":"33-45"},"PeriodicalIF":2.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00427-021-00673-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25475826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}