{"title":"Empirical assessment of the relation between ecological connectivity and land complexity based on information-theoretic metrics","authors":"Derya Gülçin","doi":"10.1016/j.ecocom.2021.100969","DOIUrl":"10.1016/j.ecocom.2021.100969","url":null,"abstract":"<div><p><span>Habitat fragmentation<span> and connectivity loss pose significant threats to biodiversity at both local and landscape levels. Strategies to increase ecological connectivity and preserve strong connectivity are important for dealing with the potential threat of habitat degradation. Various metrics have been used to measure (i.e., quantify) landscape composition and configuration in landscape ecology. However, their relationship with ecological connectivity must be understood to interpret landscape patterns comprehensively. In the present study, correlations between ecological connectivity and land complexity are examined based on information-theory metrics. Two primary questions are explored: (1) to what extent are landscape mosaic measures of entropy correlated with ecological connectivity, with landscape gradient-based measures, and with each other? (2) are landscape gradient-based entropy measures correlated with ecological connectivity more than discrete entropy measures? Results show that all information theoretic metrics are statistically significant (</span></span><em>p</em> < 0.05) for modelling ecological connectivity. Among categorically-based indices, the relationship between ECI and joint entropy was the most significant, while a generalized additive model indicated that Boltzmann entropy could predict the ecological connectivity index, explaining ∼60% of the variance. Therefore, configurational entropy can be used for improving ecological connectivity models.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100969"},"PeriodicalIF":3.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86821912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"For whom is it more beneficial to stop interactions with defectors: Cooperators or defectors?","authors":"Shun Kurokawa","doi":"10.1016/j.ecocom.2021.100968","DOIUrl":"10.1016/j.ecocom.2021.100968","url":null,"abstract":"<div><p>Cooperation is a mysterious evolutionary phenomenon and its mechanisms require elucidation. When cooperators can stop interactions with defectors, the evolution of cooperation becomes possible; this is one mechanism that facilitates the evolution of cooperation. Here, stopping interactions with defectors is beneficial not only for cooperators but also for defectors. The question then arises, for whom is stopping interactions with defectors more beneficial: cooperators or defectors? By utilizing evolutionary game theory, I addressed this question using a two-player game involving four strategies: (1) cooperators who stop the interaction if the current partner is a defector, (2) cooperators who attempt to maintain a relationship with anyone, (3) defectors who stop the interaction if the current partner is a defector, and (4) defectors who attempt to maintain a relationship with anyone. Our results show that, at equilibrium, the ratio of cooperators who stop the interaction if the current partner is a defector to cooperators who attempt to maintain a relationship with anyone is larger than the ratio of defectors who stop the interaction if the current partner is a defector to defectors who attempt to maintain a relationship with anyone. Thus, cooperators rather than defectors are more likely to stop interactions with defectors at equilibrium. This result is consistent with a previous experimental study in which a positive correlation was detected between the degree of individuals’ cooperativeness and how accurately the individuals recognize whether other individuals are cooperators or defectors. Thus, the theoretical work presented in this study provides relevant insights into the natural phenomena of cooperation and recognition.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100968"},"PeriodicalIF":3.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1476945X21000611/pdfft?md5=eaa0bbc1c432002d0aeec983c0642be5&pid=1-s2.0-S1476945X21000611-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82838832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A security game approach for strategic conservation against poaching considering food web complexities","authors":"Zohreh S. Gatmiry , Ashkan Hafezalkotob , Morteza Khakzar bafruei , Roya Soltani","doi":"10.1016/j.ecocom.2021.100970","DOIUrl":"10.1016/j.ecocom.2021.100970","url":null,"abstract":"<div><p>Mitigating the poaching pressure on food webs under multiple constraints (including financial and ecological ones) remains an open problem within conservation. Within this field, mathematically modeling the effects of poaching threats on managerial decision-making is a novel approach. To fill this scientific gap, the present paper uses a security game approach to model the interactions between an environmental manager (defender) and a group of profit-seeking pursuit poachers (attackers) who target species which are nodes of the food web. Based upon the non-cooperative Stackelberg game, the objective of the defender (as leader) is to keep the food web at or near equilibrium through optimally manipulating the populations of an optimal subset of species. In contrast, each attacker strives to maximize monetary profit by hunting an optimal population size of the selected species. The model is validated by a numerical example examining the food web of the endangered Persian leopard (<em>Panthera pardus saxicolor</em>), which lives in Golestan National Park (GNP), Iran. The model provides an overarching biotic intervention strategy to keep the (1 predator-4 prey) food web near equilibrium, while only 2 prey species (the urial <em>(Ovis vignei</em>) and the red deer <em>(Cervus elaphus)</em>) are directly threatened by poachers. The examination revealed that both species population data and poaching data should be taken into account to set effective multi-species conservation prioritization levels. In a sensitivity analysis approach, it was found that, despite the fact that red deer is endangered and preferred by poachers, the deterrent penalty measure should be 1.5 times greater for poaching urial than red deer. The output analysis illustrated that, in order to bring the urial deterrent penalty measure closer to the red deer one, enforcement measures should be about 2.5 times stricter for poaching urial than red deer. The results specifically yield insight into how to optimally conserve a food web equilibrium under poaching pressure and within several constraints.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100970"},"PeriodicalIF":3.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81658999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity","authors":"S.O. Vanwambeke , P.H.T. Schimit","doi":"10.1016/j.ecocom.2021.100967","DOIUrl":"10.1016/j.ecocom.2021.100967","url":null,"abstract":"<div><p>Tick-borne diseases have long been mainly associated with forests, the primary habitat for <span><em>Ixodes ricinus</em></span>, where they are mostly found. However, increasing evidence shows that humans also often get bitten in gardens, parks and other habitats generally associated with lower vegetation and tick density. Therefore, to understand the risk of infection from a tick bite and thus of potential subsequent infection, it is necessary to separate the factors of risk: hazard and vulnerability, here detailed as exposure and coping capacity, and to examine their spatial heterogeneity. This paper proposes a spatially explicit model for human movement through the entire landscape and forest visits to investigate the three components of risk. The population and its movements are set spatially in three study case landscapes extracted from Wallonia, south Belgium. Parameters that are challenging to estimate, such as the probability of a person getting bitten in various environments and the probability of inspecting one’s body to remove ticks, are analyzed in a wide range of combinations. Results show that, while bites are densest in the forest, they happen across the landscape at levels comparable when summed. When coping capacity is modified, as it could be through raising awareness and improving uptake of protective measures, the most at-risk group can change, and the riskier landscape can become the periurban or the rural landscape. This model offers a platform to investigate the respective contributions of hazard, exposure, and people’s capacity to cope with the hazard. It would benefit from empirical input parameters measured more specifically for its purpose.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100967"},"PeriodicalIF":3.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86211972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanfer Tanriverdi , Haci Mehmet Baskonus , Adnan Ahmad Mahmud , Kalsum Abdulrahman Muhamad
{"title":"Explicit solution of fractional order atmosphere-soil-land plant carbon cycle system","authors":"Tanfer Tanriverdi , Haci Mehmet Baskonus , Adnan Ahmad Mahmud , Kalsum Abdulrahman Muhamad","doi":"10.1016/j.ecocom.2021.100966","DOIUrl":"10.1016/j.ecocom.2021.100966","url":null,"abstract":"<div><p>In this paper, the dynamical behaviours and mathematics of the fractional order atmosphere-soil-land plant carbon cycle system involving the time dependent variable of carbon flux in atmosphere, the carbon flux of soil, and the carbon flux of animals and plants are qualitatively and numerically investigated. Explicit solutions in terms of the Mittag-Leffler functions to the terrestrial carbon cycle system around the equilibrium point are first time reported by applying Laplace transform of Caputo fractional derivative. The graphs of obtained solutions the time dependent variable of carbon flux in atmosphere, the carbon flux of soil and the carbon flux of animals and plants are plotted against each other. Explicit solutions to original system and stability of the fractional order linearized system around the equilibrium point are graphically compared as well.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100966"},"PeriodicalIF":3.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80766646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The fox who cried wolf: A keywords and literature trend analysis on the phenomenon of mesopredator release","authors":"Laura Saggiomo , Valentina Bar , Bruno Esattore","doi":"10.1016/j.ecocom.2021.100963","DOIUrl":"10.1016/j.ecocom.2021.100963","url":null,"abstract":"<div><p>Human activities severely impact the distribution and behaviour of apex predators in numerous terrestrial and aquatic ecosystems, with cascading effects on several species. Mesopredator outbreaks attributable to the removal of an apex predator have often been recorded and described in the literature as “mesopredator release”. During recent decades several examples of the phenomenon have been observed and studied in many different parts of the world. In this paper, we quantitatively reviewed the existing literature on mesopredator release using two software packages (VOSviewer and CiteSpace) to investigate patterns and trends in author keywords through occurrences and temporal analyses, and creating relative network maps. The results showed that even though the general scientific interest in mesopredator release has increased in recent decades, the vast majority of studies focus on canid species, leaving many other species or entire taxa (e.g., reptiles) understudied and under-described. The connection between invasive species and mesopredator release has only recently been more extensively explored and also the effects of apex predators declining in aquatic ecosystems are still only partially investigated. Due to the increasing effect of biological invasions, overfishing, and either the decline or the rise of apex predators in different parts of the world, we expect an even higher increase in interest and number of published documents on the subject. We also encourage widening the research focus beyond canids to include other important taxa.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100963"},"PeriodicalIF":3.5,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89029520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiyue Yang , Nan Li , Hailin Mu , Ming Zhang , Jingru Pang , Mahmood Ahmad
{"title":"Study on the long-term and short-term effects of globalization and population aging on ecological footprint in OECD countries","authors":"Xiyue Yang , Nan Li , Hailin Mu , Ming Zhang , Jingru Pang , Mahmood Ahmad","doi":"10.1016/j.ecocom.2021.100946","DOIUrl":"10.1016/j.ecocom.2021.100946","url":null,"abstract":"<div><p>Population aging has become a global phenomenon. Whereas, the ecological consequences of population aging are rarely addressed in current research. In this context, this study contributes to the existing literature by providing new empirical evidence on how population aging along with globalization, economic growth, energy consumption, natural resource rent, and human capital affect ecological footprint for selected 27 Organization for Economic Cooperation and Development (OECD) countries during 1970–2017. This study utilizes an advanced econometric approach, Pooled Mean Group (PMG) estimator for empirical estimation, that allows heterogeneity in the slope parameters and dependencies across countries. The long-term results disclose that globalization (overall) decreases the ecological footprint. On the other hand, financial and political globalization poses a favorable impact on environmental quality, while economic and social globalization is found to increase environmental degradation. Population aging has a statistically significant negative effect on the ecological footprint, but its non-linear term increases the ecological footprint. Additionally, economic growth, energy consumption, and natural resource rent exacerbate environmental deterioration. In contrast, human capital decreases ecological footprint. Based on the empirical results, important policy implications have been provided.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"47 ","pages":"Article 100946"},"PeriodicalIF":3.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100946","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90608091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bubbling and hydra effect in a population system with Allee effect","authors":"Koushik Garain , Partha Sarathi Mandal","doi":"10.1016/j.ecocom.2021.100939","DOIUrl":"10.1016/j.ecocom.2021.100939","url":null,"abstract":"<div><p>We present a continuous time predator-prey model and predator’s growth subjected to component Allee effect. The model also includes density dependent mortality of predator. We investigate our model both analytically and numerically, and highlighted the effect of density independent mortality and Allee effect. In our system, we find that a fixed point representing the extinction of predator is always a stable point. When coexistence equilibria exists our system is bistable. We have observed that tristability is possible for our model that includes two stable co-existence fixed point. The most important phenomena which we have observed are hydra effect and cascading effect. Due to component Allee effect in predator the system shows multiple hydra effect. We discuss the phenomenon of bubbling, which indicates increasing and decreasing of amplitudes of cycles. We have presented one-parametric as well as two-parametric bifurcation diagram and also all possible bifurcations that the system could go through.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"47 ","pages":"Article 100939"},"PeriodicalIF":3.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78544692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno Senterre , Porter P. Lowry II , Ehoarn Bidault , Tariq Stévart
{"title":"Ecosystemology: A new approach toward a taxonomy of ecosystems","authors":"Bruno Senterre , Porter P. Lowry II , Ehoarn Bidault , Tariq Stévart","doi":"10.1016/j.ecocom.2021.100945","DOIUrl":"10.1016/j.ecocom.2021.100945","url":null,"abstract":"<div><p>Over the last several years, the IUCN Red List approach for assessing the risk of extinction faced by species has been adapted into a Red List of Ecosystems methodology. This endeavor faces several important challenges, including how to define the types of ecosystems to which the Red List criteria are applied, and how to manage information on the geographic distribution of ecosystems in an open, transparent, and standardized manner linking mapping, typology, and field studies. We propose a fundamentally novel approach that differs from currently available ecosystem typologies in three important aspects by (1) offering a new way of conceptualizing types of ecosystems, (2) providing an explicit method for communicating the conceptualized ecosystems and how they are circumscribed, and (3) developing technical tools for managing the resulting conceptual model. Firstly, ecosystem types are defined by studying biogeoclimatic gradients using an approach that is both modular (in which combinations of ecological factors are studied at a given scale) and hierarchical (involving relative spatial and temporal scales in which local/site gradients are dependent on bioclimatic/regional gradients). This avoids the problem of classes that are not mutually exclusive and enables the classification of all types of ecosystems, including for example marshes on rocky outcrops in superhumid tropical montane areas. Secondly, the names of ecosystem species are linked to a nomenclatural type defined by a ‘type site’ or ‘biotype’, adopting a principle that makes clear a given author's notion of an ecosystem type even if the accompanying name and description are partial or imperfect, or when the ecosystem type is delimited too broadly according to the interpretation of another author. Ecosystem names are structured as a descriptive diagnosis based on a standardized set of characters and character states. This typological approach for facilitating the naming and comparison of ecosystem circumscriptions is thus truly taxonomic in nature. Thirdly, in order to facilitate the use and application of the conceptual approach presented here, we translate it into a practical tool by developing a smartphone-based system to collect data for observing and describing virtual ecosystem specimens in the field, along with the \"Bio\" database, which manages ecosystem data and also enables tracking synonymies using an open system that entails assigning <em>determinavits</em><span> to biotypes.</span></p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"47 ","pages":"Article 100945"},"PeriodicalIF":3.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100945","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78272347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How seasonal variations in birth and transmission rates impact population dynamics in a basic SIR model","authors":"Charlotte Ward, Alex Best","doi":"10.1016/j.ecocom.2021.100949","DOIUrl":"10.1016/j.ecocom.2021.100949","url":null,"abstract":"<div><p>The changing climate is expected to alter the timings of key events in species life-histories. These shifts are likely to have important consequences for infectious disease dynamics, as the distribution and abundance of host species will lead to a different environment for parasites. Previous work has shown how seasonality in single host traits - most commonly the reproduction rate or transmission rate - can lead to an array of complex epidemiological dynamics, including chaos and multiple-stable states, with changes to the timing and amplitude of the seasonal peaks often driving drastic changes in behaviour. However, more than one life-history trait is likely to be seasonal, and changing environmental conditions may impact each of them in different ways, yet there have been few studies of host-parasite dynamics that include more than one seasonal trait. Here we examine a Susceptible-Infected-Recovered epidemiological model in which both reproduction and transmission exhibit seasonal fluctuations. We examine how the amplitude and timing of these seasonal peaks impact disease dynamics. We show that the relative timing of the two events is key, with the most stable dynamics when births peak a few months before transmission. We also show that chaotic dynamics become more likely when transmission in particular has a high amplitude, and when baseline transmission and virulence are high. Our results emphasise the importance of seasonality and timing of host life-history events to disease dynamics.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"47 ","pages":"Article 100949"},"PeriodicalIF":3.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecocom.2021.100949","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84061680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}