空间异质性危害、暴露和应对能力导致的蜱叮咬风险

IF 3.1 3区 环境科学与生态学 Q2 ECOLOGY
S.O. Vanwambeke , P.H.T. Schimit
{"title":"空间异质性危害、暴露和应对能力导致的蜱叮咬风险","authors":"S.O. Vanwambeke ,&nbsp;P.H.T. Schimit","doi":"10.1016/j.ecocom.2021.100967","DOIUrl":null,"url":null,"abstract":"<div><p>Tick-borne diseases have long been mainly associated with forests, the primary habitat for <span><em>Ixodes ricinus</em></span>, where they are mostly found. However, increasing evidence shows that humans also often get bitten in gardens, parks and other habitats generally associated with lower vegetation and tick density. Therefore, to understand the risk of infection from a tick bite and thus of potential subsequent infection, it is necessary to separate the factors of risk: hazard and vulnerability, here detailed as exposure and coping capacity, and to examine their spatial heterogeneity. This paper proposes a spatially explicit model for human movement through the entire landscape and forest visits to investigate the three components of risk. The population and its movements are set spatially in three study case landscapes extracted from Wallonia, south Belgium. Parameters that are challenging to estimate, such as the probability of a person getting bitten in various environments and the probability of inspecting one’s body to remove ticks, are analyzed in a wide range of combinations. Results show that, while bites are densest in the forest, they happen across the landscape at levels comparable when summed. When coping capacity is modified, as it could be through raising awareness and improving uptake of protective measures, the most at-risk group can change, and the riskier landscape can become the periurban or the rural landscape. This model offers a platform to investigate the respective contributions of hazard, exposure, and people’s capacity to cope with the hazard. It would benefit from empirical input parameters measured more specifically for its purpose.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"48 ","pages":"Article 100967"},"PeriodicalIF":3.1000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity\",\"authors\":\"S.O. Vanwambeke ,&nbsp;P.H.T. Schimit\",\"doi\":\"10.1016/j.ecocom.2021.100967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tick-borne diseases have long been mainly associated with forests, the primary habitat for <span><em>Ixodes ricinus</em></span>, where they are mostly found. However, increasing evidence shows that humans also often get bitten in gardens, parks and other habitats generally associated with lower vegetation and tick density. Therefore, to understand the risk of infection from a tick bite and thus of potential subsequent infection, it is necessary to separate the factors of risk: hazard and vulnerability, here detailed as exposure and coping capacity, and to examine their spatial heterogeneity. This paper proposes a spatially explicit model for human movement through the entire landscape and forest visits to investigate the three components of risk. The population and its movements are set spatially in three study case landscapes extracted from Wallonia, south Belgium. Parameters that are challenging to estimate, such as the probability of a person getting bitten in various environments and the probability of inspecting one’s body to remove ticks, are analyzed in a wide range of combinations. Results show that, while bites are densest in the forest, they happen across the landscape at levels comparable when summed. When coping capacity is modified, as it could be through raising awareness and improving uptake of protective measures, the most at-risk group can change, and the riskier landscape can become the periurban or the rural landscape. This model offers a platform to investigate the respective contributions of hazard, exposure, and people’s capacity to cope with the hazard. It would benefit from empirical input parameters measured more specifically for its purpose.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"48 \",\"pages\":\"Article 100967\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X2100060X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X2100060X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

长期以来,蜱传疾病主要与森林有关,森林是蓖麻蜱的主要栖息地,它们大多在那里被发现。然而,越来越多的证据表明,人类也经常在花园、公园和其他通常与低植被和蜱虫密度相关的栖息地被咬伤。因此,为了了解蜱叮咬的感染风险以及潜在的后续感染风险,有必要分离风险因素:危害和脆弱性,这里详细描述为暴露和应对能力,并研究它们的空间异质性。本文提出了一个人类在整个景观和森林中活动的空间明确模型,以调查风险的三个组成部分。人口及其流动在比利时南部瓦隆尼亚提取的三个研究案例景观中进行空间设置。一些难以估计的参数,比如一个人在各种环境中被咬的概率,以及检查身体以清除蜱虫的概率,都是在广泛的组合中进行分析的。结果表明,虽然咬伤在森林中最密集,但它们在整个景观中发生的水平与总和相当。当应对能力得到改善时,比如可以通过提高认识和采取更好的保护措施,风险最高的群体就会发生变化,风险较高的景观就会变成城郊或农村景观。该模型提供了一个平台来调查危害、暴露和人们应对危害的能力各自的贡献。它将受益于更具体地为此目的而测量的经验输入参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity

Tick-borne diseases have long been mainly associated with forests, the primary habitat for Ixodes ricinus, where they are mostly found. However, increasing evidence shows that humans also often get bitten in gardens, parks and other habitats generally associated with lower vegetation and tick density. Therefore, to understand the risk of infection from a tick bite and thus of potential subsequent infection, it is necessary to separate the factors of risk: hazard and vulnerability, here detailed as exposure and coping capacity, and to examine their spatial heterogeneity. This paper proposes a spatially explicit model for human movement through the entire landscape and forest visits to investigate the three components of risk. The population and its movements are set spatially in three study case landscapes extracted from Wallonia, south Belgium. Parameters that are challenging to estimate, such as the probability of a person getting bitten in various environments and the probability of inspecting one’s body to remove ticks, are analyzed in a wide range of combinations. Results show that, while bites are densest in the forest, they happen across the landscape at levels comparable when summed. When coping capacity is modified, as it could be through raising awareness and improving uptake of protective measures, the most at-risk group can change, and the riskier landscape can become the periurban or the rural landscape. This model offers a platform to investigate the respective contributions of hazard, exposure, and people’s capacity to cope with the hazard. It would benefit from empirical input parameters measured more specifically for its purpose.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Complexity
Ecological Complexity 环境科学-生态学
CiteScore
7.10
自引率
0.00%
发文量
24
审稿时长
3 months
期刊介绍: Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales. Ecological Complexity will publish research into the following areas: • All aspects of biocomplexity in the environment and theoretical ecology • Ecosystems and biospheres as complex adaptive systems • Self-organization of spatially extended ecosystems • Emergent properties and structures of complex ecosystems • Ecological pattern formation in space and time • The role of biophysical constraints and evolutionary attractors on species assemblages • Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory • Ecological topology and networks • Studies towards an ecology of complex systems • Complex systems approaches for the study of dynamic human-environment interactions • Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change • New tools and methods for studying ecological complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信