Ecological Complexity最新文献

筛选
英文 中文
How to model the local interaction in the predator–prey system at slow diffusion in a heterogeneous environment? 如何在非均匀环境中建立慢扩散条件下捕食者-猎物系统的局部相互作用模型?
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-12-01 DOI: 10.1016/j.ecocom.2022.101026
Toan D. Ha , Vyacheslav G. Tsybulin , Pavel A. Zelenchuk
{"title":"How to model the local interaction in the predator–prey system at slow diffusion in a heterogeneous environment?","authors":"Toan D. Ha ,&nbsp;Vyacheslav G. Tsybulin ,&nbsp;Pavel A. Zelenchuk","doi":"10.1016/j.ecocom.2022.101026","DOIUrl":"10.1016/j.ecocom.2022.101026","url":null,"abstract":"<div><p>We examine the nonlinear reaction–diffusion–advection equations to modeling of the predator–prey system under heterogeneous carrying capacity of the prey, and Holling type II functional response. When advection and diffusion fluxes are absent or small, we detect the discrepancy between the resource (carrying capacity) and species distributions. The large diffusion eliminates this effect. We propose a modification of the functional response coefficients to provide the correlation between species distribution and resource in both cases. The numerical simulation of several models both under small and moderate advection–diffusion fluxes is carried out.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"52 ","pages":"Article 101026"},"PeriodicalIF":3.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78624368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Scaling from optimal behavior to population dynamics and ecosystem function 从最优行为到种群动态和生态系统功能的尺度
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-12-01 DOI: 10.1016/j.ecocom.2022.101027
Emil F. Frølich, U. H. Thygesen, K. H. Andersen
{"title":"Scaling from optimal behavior to population dynamics and ecosystem function","authors":"Emil F. Frølich, U. H. Thygesen, K. H. Andersen","doi":"10.1016/j.ecocom.2022.101027","DOIUrl":"https://doi.org/10.1016/j.ecocom.2022.101027","url":null,"abstract":"","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"44 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76699160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling from optimal behavior to population dynamics and ecosystem function 从最优行为到种群动态和生态系统功能的尺度
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-12-01 DOI: 10.1016/j.ecocom.2022.101027
Emil F. Frølich , Uffe H. Thygesen , Ken H. Andersen
{"title":"Scaling from optimal behavior to population dynamics and ecosystem function","authors":"Emil F. Frølich ,&nbsp;Uffe H. Thygesen ,&nbsp;Ken H. Andersen","doi":"10.1016/j.ecocom.2022.101027","DOIUrl":"https://doi.org/10.1016/j.ecocom.2022.101027","url":null,"abstract":"<div><p>While behavioral responses of individual organisms can be predicted with optimal foraging theory, the theory of how individual behavior feeds back to population and ecosystem dynamics has not been fully explored. Ecological models of trophic interactions incorporating behavior of entire populations commonly assume either that populations act as one when making decisions, that behavior is slowly varying or that non-linear effects are negligible in behavioral choices at the population scale. Here, we scale from individual optimal behavior to ecosystem structure in a classic tri-trophic chain where both prey and predators adapt their behavior in response to food availability and predation risk. Behavior is modeled as playing the field, with both consumers and predators behaving optimally at every instant basing their choices on the average population behavior. We establish uniqueness of the Nash equilibrium, and find it numerically. By modeling the interactions as playing the field, we can perform instantaneous optimization at the individual level while taking the entire population into account. We find that optimal behavior essentially removes the effect of top-down forcing at the population level, while drastically changing the behavior. Bottom-up forcing is found to increase populations at all trophic levels. These phenomena both appear to be driven by an emerging constant consumption rate, corresponding to a partial satiation. In addition, we find that a Type III functional response arises from a Type II response for both predators and consumers when their behavior follows the Nash equilibrium, showing that this is a general phenomenon. Our approach is general and computationally efficient and can be used to account for behavior in population dynamics with fast behavioral responses.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"52 ","pages":"Article 101027"},"PeriodicalIF":3.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1476945X22000472/pdfft?md5=9fd0319dccb1a0e792c7334d89ae6f41&pid=1-s2.0-S1476945X22000472-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90014203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Good predictors for the fixation probability on complex networks of multi-player games using territorial interactions 利用区域相互作用对多人博弈复杂网络的注视概率进行良好预测
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-10-01 DOI: 10.1016/j.ecocom.2022.101017
Pedro H.T. Schimit , Fábio H. Pereira , Mark Broom
{"title":"Good predictors for the fixation probability on complex networks of multi-player games using territorial interactions","authors":"Pedro H.T. Schimit ,&nbsp;Fábio H. Pereira ,&nbsp;Mark Broom","doi":"10.1016/j.ecocom.2022.101017","DOIUrl":"10.1016/j.ecocom.2022.101017","url":null,"abstract":"<div><p>In 2012 Broom and Rychtar developed a new framework to consider the evolution of a population over a non-homogeneous underlying structure, where fitness depends upon multiplayer interactions amongst the individuals within the population played in groups of various sizes (including one). This included the independent model, and as a special case the territorial raider model, which has been considered in a series of subsequent papers. Here individuals are based upon the vertex of a graph but move to interact with their neighbours, sometimes meeting in large groups. The most important single property of such populations is the fixation probability, the probability of a single mutant completely replacing the existing population. In a recent paper we considered the fixation probability for the Birth Death Birth (BDB) dynamics for three games, a Public Goods game, the Hawk–Dove game and for fixed fitnesses for a large number of randomly generated graphs, in particular seeing if important underlying graph properties could be used as predictors. We found two good predictors, temperature and mean group size, but some interesting and unusual features for one type of graph, Barabasi–Albert graphs. In this paper we use a regression analysis to investigate (the usual) three alternative evolutionary dynamics (BDD, DBB, DBD) in addition to the original BDB. In particular, we find that the dynamics split into two pairs, BDB/DBD and BDD/DBB, each of which give essentially the same results and found a good fit to the data using a quadratic regression involving the above two variables. Further we find that temperature is the most important predictor for the Hawk–Dove game, whilst for the Public Goods game the group size also plays a key role, and is more important than the temperature for the BDD/DBB dynamics.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"51 ","pages":"Article 101017"},"PeriodicalIF":3.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85410151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Structural sensitivity in the functional responses of predator–prey models 捕食者-猎物模型功能反应中的结构敏感性
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-10-01 DOI: 10.1016/j.ecocom.2022.101014
Sarah K. Wyse , Maria M. Martignoni , May Anne Mata , Eric Foxall , Rebecca C. Tyson
{"title":"Structural sensitivity in the functional responses of predator–prey models","authors":"Sarah K. Wyse ,&nbsp;Maria M. Martignoni ,&nbsp;May Anne Mata ,&nbsp;Eric Foxall ,&nbsp;Rebecca C. Tyson","doi":"10.1016/j.ecocom.2022.101014","DOIUrl":"10.1016/j.ecocom.2022.101014","url":null,"abstract":"<div><p><span>In mathematical modelling, several different functional forms can often be used to fit a data set equally well, especially if the data is sparse. In such cases, these mathematically different but similar looking functional forms are typically considered interchangeable. Recent work, however, shows that similar functional responses may nonetheless result in significantly different bifurcation points for the Rosenzweig–MacArthur predator–prey system. Since the bifurcation behaviours include destabilizing oscillations, predicting the occurrence of such behaviours is clearly important. Ecologically, different bifurcation behaviours mean that different predictions may be obtained from the models. These predictions can range from stable coexistence to the extinction of both species, so obtaining more accurate predictions is also clearly important for conservationists<span>. Mathematically, this difference in bifurcation structure given similar functional responses is called structural sensitivity. We extend the existing work to find that the Leslie–Gower–May predator–prey system is also structurally sensitive to the functional response. Using the Rosenzweig–MacArthur and Leslie–Gower–May models, we then aim to determine if there is some way to obtain a functional description of data so that different functional responses yield the same bifurcation structure, i.e., we aim to describe data such that our model is not structurally sensitive. We first add stochasticity to the functional responses and find that better similarity of the resulting bifurcation structures is achieved. Then, we analyse the functional responses using two different methods to determine which part of each function contributes most to the observed bifurcation behaviour. We find that prey densities around the coexistence steady state are most important in defining the functional response. Lastly, we propose a procedure for </span></span>ecologists and mathematical modellers to increase the accuracy of model predictions in predator–prey systems.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"51 ","pages":"Article 101014"},"PeriodicalIF":3.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86293765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Socio-ecological contagion in Veganville 维根维尔的社会生态传染
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-10-01 DOI: 10.1016/j.ecocom.2022.101015
Thomas Elliot
{"title":"Socio-ecological contagion in Veganville","authors":"Thomas Elliot","doi":"10.1016/j.ecocom.2022.101015","DOIUrl":"10.1016/j.ecocom.2022.101015","url":null,"abstract":"<div><p>In order to meet the 2015 Paris Agreement for 1.5 °C global warming, per capita emissions need to come down to 2.9 tonnes by 2030. Food systems are known to be a significant source of an individual's carbon footprint and demand attention in sustainability management. The objective of this research is to conceptualise and define an intersection between contagion theory and socio-ecological systems models. This is achieved using a population dynamics model between two groups characterised by a distinct food regime: omnivores and vegans. The greenhouse gas emissions of each food regime is used to estimate the city's changing carbon foodprint as the food regimes shift by social contagion. Social contagion is identified as a catalyst for social tipping points, and emission pathways are explored with a variety of different contagion variables to test sensitivity towards a tipping point. The main finding is that the urban carbon foodprint can be reduced significantly with widespread adoption of veganism, but that the foodprint reaches a minimum at 1.97 tonnes CO<sub>2</sub>-equivalent per capita. This demonstrates the need to embed food demand in urban climate governance such as nudging towards plant-based food alternatives. Nudging is discussed as a lever of ecological importance to social contagion. Lastly, socio-ecological contagion is defined as <em>the interactions between social contagion and damage done to ecological systems to measure peer-to-peer spread of environmental stewardship agendas</em>, such as the journey to Veganville<em>.</em></p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"51 ","pages":"Article 101015"},"PeriodicalIF":3.5,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85203187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Susceptible-infectious-susceptible (SIS) model with virus mutation in a variable population size 易感-感染-易感(SIS)模型在变种群大小的病毒突变
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-06-01 DOI: 10.1016/j.ecocom.2022.101004
Ayse Peker Dobie
{"title":"Susceptible-infectious-susceptible (SIS) model with virus mutation in a variable population size","authors":"Ayse Peker Dobie","doi":"10.1016/j.ecocom.2022.101004","DOIUrl":"10.1016/j.ecocom.2022.101004","url":null,"abstract":"<div><p>The complex dynamics of a contagious disease in which populations experience horizontal and vertical transmissions, size variation, and virus mutations are of considerable practical and theoretical interest. We model such a system by dividing a population into three distinct groups: susceptibles (<span><math><mi>S</mi></math></span>), <span><math><mi>C</mi></math></span>-infected (<span><math><mi>C</mi></math></span>) and <span><math><mi>F</mi></math></span>-infected (<span><math><mi>F</mi></math></span>), based on the Susceptible-Infectious-Susceptible (<span><math><mrow><mi>S</mi><mi>I</mi><mi>S</mi></mrow></math></span>) model. Once the individuals in the <span><math><mi>C</mi></math></span>-infected group recover from the disease, they gain no permanent immunity. The virus can mutate in the group <span><math><mi>C</mi></math></span>. When it does, the individuals become members of the <span><math><mi>F</mi></math></span>-infected group. The mutated virus causes a lethal and incurable disease with a high mortality rate. We discuss the model for two cases. For the first case, all the newborns from infected mothers develop the disease shortly after their birth. For the second case, there exist equal transmission rates and the <span><math><mi>C</mi></math></span>-infected population is lifelong infectious. Our analysis shows that both systems have positive solutions, and the first model possesses four equilibrium points, the trivial one (extinction of the species), <span><math><mi>C</mi></math></span>-free equilibrium (extinction of the ancestor virus) and two endemic equilibria of different properties. We identify the net population growth rates of the susceptible and <span><math><mi>C</mi></math></span>-infected groups for the existence of the equilibria of the first model. We define the conditions of parameters for which species extinction and endemic equilibria are locally asymptotically stable. We observe that bifurcation occurs at the <span><math><mi>C</mi></math></span>-free equilibrium. For the second model, we find that there is only one endemic equilibrium and it is always locally asymptotically stable. We also determine the region for the net population growth rates of the susceptible and <span><math><mi>F</mi></math></span>-infected groups for the existence of the endemic equilibrium.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 101004"},"PeriodicalIF":3.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80681757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
“Perchance to dream?”: Assessing the effects of dispersal strategies on the fitness of expanding populations “也许是做梦?”:评估扩散策略对扩大种群的适应性的影响
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-06-01 DOI: 10.1016/j.ecocom.2022.100987
N.I. Markov , E.E. Ivanko
{"title":"“Perchance to dream?”: Assessing the effects of dispersal strategies on the fitness of expanding populations","authors":"N.I. Markov ,&nbsp;E.E. Ivanko","doi":"10.1016/j.ecocom.2022.100987","DOIUrl":"10.1016/j.ecocom.2022.100987","url":null,"abstract":"<div><p>Unraveling the patterns of animals’ movements is crucial to understanding the basics of biogeography, tracking range shifts resulting from climate change, and predicting and preventing biological invasions. Many researchers have modeled animals’ dispersal under the assumptions of various movement strategies, either predetermined or directed by external factors, but none have compared the effects of different movement strategies on population survival and fitness. In this paper, using an agent-based model with a landscape divided into cells of varying quality, we compare the ecological success of three movement and habitat selection strategies (MHSSs): (i) Smart, in which animals choose the locally optimal cell; (ii) Random, in which animals move randomly between cells without taking into account their quality; (iii) Dreamer, in which animals attempt to find a habitat of dream whose quality is much higher than that of the habitat available on the map. We compare the short-term success of these MHSSs in good, medium and bad environments. We also assess the effect of temporal variation of habitat quality (specifically, winter harshness) on the success of each MHSS. Success is measured in terms of survival rate, dispersal distance, accumulated energy and quality of settled habitat. The most general conclusion is that while survival rate, accumulated energy and quality of settled habitat are affected primarily by overall habitat composition (proportions of different habitat types in the landscape), dispersal distance depends mainly on the MHSS. In medium and good environments, the Dreamer strategy is highly successful: it simultaneously outperforms the Smart strategy in dispersal distance and the Random strategy in terms of the other metrics.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 100987"},"PeriodicalIF":3.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75688506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A predator-parasitoid mathematical model to describe the biological control of the tomato leafminer Tuta absoluta 描述番茄叶螨生物防治的捕食-拟寄生物数学模型
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-06-01 DOI: 10.1016/j.ecocom.2022.100995
Felipe Alves Rubio , Flávio Cardoso Montes , Geisel Alpízar-Brenes , José Roberto Postali Parra , Josemeri Aparecida Jamielniak , Luís Pedro Lombardi Junior , Thomas Nogueira Vilches
{"title":"A predator-parasitoid mathematical model to describe the biological control of the tomato leafminer Tuta absoluta","authors":"Felipe Alves Rubio ,&nbsp;Flávio Cardoso Montes ,&nbsp;Geisel Alpízar-Brenes ,&nbsp;José Roberto Postali Parra ,&nbsp;Josemeri Aparecida Jamielniak ,&nbsp;Luís Pedro Lombardi Junior ,&nbsp;Thomas Nogueira Vilches","doi":"10.1016/j.ecocom.2022.100995","DOIUrl":"10.1016/j.ecocom.2022.100995","url":null,"abstract":"<div><p>The <span><em>Tuta absoluta</em></span><span> (Meyrick) (Lepidoptera, Gelechiidae), or tomato leafminer<span><span>, is one of the most devastating pests of tomato crops in South America. The use of parasitoids and predators as biocontrol agents of this pest is an alternative to chemical insecticides and an environmentally safe strategy. However, an outcome of a three-way </span>interspecific interaction<span> (pest-parasitoid-predator) may bring surprises. The question is thus how a combination of enemies can contribute most effectively to reduction of the pest density. We examine this using an ordinary differential equations model. The formal and numerical analyses show that the joint use of both biological controls is the best option to decrease the tomato leafminer population, in contrast to the use of each biological control agent separately. Specifically, the numerical results show that in a scenario where the only biological control is given by the parasitoid, the introduction of the predator decreases the adult Tuta population by </span></span></span><span><math><mrow><mn>28</mn><mo>%</mo></mrow></math></span>, reducing even more the damage caused in tomato crops compared to the use of parasitoid alone.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 100995"},"PeriodicalIF":3.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83428103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Role of hydrological parameters in the uncertainty in modeled soil organic carbon using a coupled water-carbon cycle model 水-碳耦合循环模型模拟土壤有机碳不确定性中水文参数的作用
IF 3.5 3区 环境科学与生态学
Ecological Complexity Pub Date : 2022-06-01 DOI: 10.1016/j.ecocom.2022.100986
Guodong Sun , Mu Mu
{"title":"Role of hydrological parameters in the uncertainty in modeled soil organic carbon using a coupled water-carbon cycle model","authors":"Guodong Sun ,&nbsp;Mu Mu","doi":"10.1016/j.ecocom.2022.100986","DOIUrl":"10.1016/j.ecocom.2022.100986","url":null,"abstract":"<div><p>Soil organic carbon is the largest carbon pool in the terrestrial biosphere. Large uncertainties exist in the numerical simulations of soil organic carbon due to inaccuracies in their mathematical descriptions of hydrological processes. In this study, the upper limit of uncertainty in modeled soil organic carbon that is induced by hydrological parameter errors, which may stem from measurement or experiential errors, is estimated in China under four different arid and humid conditions. The study was conducted using a conditional nonlinear optimal perturbation related to parameters (CNOP-P) approach and a model of the coupled water-carbon cycle (the Lund-Potsdam-Jena Wetland Hydrology and Methane Dynamic Global Vegetation Model, LPJ-WHyMe). Uncertainties in hydrological processes resulted in the largest error (2.73 kg C m<sup>−2</sup> yr<sup>−1</sup>, 20.2%) in the modeled soil organic carbon in the arid and semiarid regions of northern China, with errors of 1.20 kg C m<sup>−2</sup> yr<sup>−1</sup> (6.1%) in northeastern China, 0.45 kg C m<sup>−2</sup> yr<sup>−1</sup> (3.3%) in southern China, and -1.71 kg C m<sup>−2</sup> yr<sup>−1</sup> (13.7%) in the semihumid region of northern China. By analyzing the three components of soil organic carbon, the fast soil carbon pool was found to be the main cause of the uncertainties in modeled soil organic carbon in the four regions of China. Moreover, belowground litter was another cause of the uncertainties in the modeled soil organic carbon in northeastern China and in the semihumid region of northern China. Additional results indicated that the simulation and prediction abilities of soil organic carbon could be improved by reducing parameter errors in hydrological processes through observations or targeted observations. The parameter sensitivity test showed that the benefits to modeling soil organic carbon were similar when reducing the errors in the sensitive hydrological parameter subset, compared to the benefits of reducing the errors in all the hydrological parameters.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"50 ","pages":"Article 100986"},"PeriodicalIF":3.5,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78864450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信