Pedro H.T. Schimit , Fábio H. Pereira , Mark Broom
{"title":"利用区域相互作用对多人博弈复杂网络的注视概率进行良好预测","authors":"Pedro H.T. Schimit , Fábio H. Pereira , Mark Broom","doi":"10.1016/j.ecocom.2022.101017","DOIUrl":null,"url":null,"abstract":"<div><p>In 2012 Broom and Rychtar developed a new framework to consider the evolution of a population over a non-homogeneous underlying structure, where fitness depends upon multiplayer interactions amongst the individuals within the population played in groups of various sizes (including one). This included the independent model, and as a special case the territorial raider model, which has been considered in a series of subsequent papers. Here individuals are based upon the vertex of a graph but move to interact with their neighbours, sometimes meeting in large groups. The most important single property of such populations is the fixation probability, the probability of a single mutant completely replacing the existing population. In a recent paper we considered the fixation probability for the Birth Death Birth (BDB) dynamics for three games, a Public Goods game, the Hawk–Dove game and for fixed fitnesses for a large number of randomly generated graphs, in particular seeing if important underlying graph properties could be used as predictors. We found two good predictors, temperature and mean group size, but some interesting and unusual features for one type of graph, Barabasi–Albert graphs. In this paper we use a regression analysis to investigate (the usual) three alternative evolutionary dynamics (BDD, DBB, DBD) in addition to the original BDB. In particular, we find that the dynamics split into two pairs, BDB/DBD and BDD/DBB, each of which give essentially the same results and found a good fit to the data using a quadratic regression involving the above two variables. Further we find that temperature is the most important predictor for the Hawk–Dove game, whilst for the Public Goods game the group size also plays a key role, and is more important than the temperature for the BDD/DBB dynamics.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":"51 ","pages":"Article 101017"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Good predictors for the fixation probability on complex networks of multi-player games using territorial interactions\",\"authors\":\"Pedro H.T. Schimit , Fábio H. Pereira , Mark Broom\",\"doi\":\"10.1016/j.ecocom.2022.101017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2012 Broom and Rychtar developed a new framework to consider the evolution of a population over a non-homogeneous underlying structure, where fitness depends upon multiplayer interactions amongst the individuals within the population played in groups of various sizes (including one). This included the independent model, and as a special case the territorial raider model, which has been considered in a series of subsequent papers. Here individuals are based upon the vertex of a graph but move to interact with their neighbours, sometimes meeting in large groups. The most important single property of such populations is the fixation probability, the probability of a single mutant completely replacing the existing population. In a recent paper we considered the fixation probability for the Birth Death Birth (BDB) dynamics for three games, a Public Goods game, the Hawk–Dove game and for fixed fitnesses for a large number of randomly generated graphs, in particular seeing if important underlying graph properties could be used as predictors. We found two good predictors, temperature and mean group size, but some interesting and unusual features for one type of graph, Barabasi–Albert graphs. In this paper we use a regression analysis to investigate (the usual) three alternative evolutionary dynamics (BDD, DBB, DBD) in addition to the original BDB. In particular, we find that the dynamics split into two pairs, BDB/DBD and BDD/DBB, each of which give essentially the same results and found a good fit to the data using a quadratic regression involving the above two variables. Further we find that temperature is the most important predictor for the Hawk–Dove game, whilst for the Public Goods game the group size also plays a key role, and is more important than the temperature for the BDD/DBB dynamics.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":\"51 \",\"pages\":\"Article 101017\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X2200037X\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X2200037X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Good predictors for the fixation probability on complex networks of multi-player games using territorial interactions
In 2012 Broom and Rychtar developed a new framework to consider the evolution of a population over a non-homogeneous underlying structure, where fitness depends upon multiplayer interactions amongst the individuals within the population played in groups of various sizes (including one). This included the independent model, and as a special case the territorial raider model, which has been considered in a series of subsequent papers. Here individuals are based upon the vertex of a graph but move to interact with their neighbours, sometimes meeting in large groups. The most important single property of such populations is the fixation probability, the probability of a single mutant completely replacing the existing population. In a recent paper we considered the fixation probability for the Birth Death Birth (BDB) dynamics for three games, a Public Goods game, the Hawk–Dove game and for fixed fitnesses for a large number of randomly generated graphs, in particular seeing if important underlying graph properties could be used as predictors. We found two good predictors, temperature and mean group size, but some interesting and unusual features for one type of graph, Barabasi–Albert graphs. In this paper we use a regression analysis to investigate (the usual) three alternative evolutionary dynamics (BDD, DBB, DBD) in addition to the original BDB. In particular, we find that the dynamics split into two pairs, BDB/DBD and BDD/DBB, each of which give essentially the same results and found a good fit to the data using a quadratic regression involving the above two variables. Further we find that temperature is the most important predictor for the Hawk–Dove game, whilst for the Public Goods game the group size also plays a key role, and is more important than the temperature for the BDD/DBB dynamics.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity