AerospacePub Date : 2024-03-29DOI: 10.3390/aerospace11040269
Kun Zhang, Jianyao Yao, Wenxiang Zhu, Zhifu Cao, Teng Li, Jianqiang Xin
{"title":"Parameterized Reduced-Order Models for Probabilistic Analysis of Thermal Protection System Based on Proper Orthogonal Decomposition","authors":"Kun Zhang, Jianyao Yao, Wenxiang Zhu, Zhifu Cao, Teng Li, Jianqiang Xin","doi":"10.3390/aerospace11040269","DOIUrl":"https://doi.org/10.3390/aerospace11040269","url":null,"abstract":"The thermal protection system (TPS) represents one of the most critical subsystems for vehicle re-entry. However, due to uncertainties in thermal loads, material properties, and manufacturing deviations, the thermal response of the TPS exhibits significant randomness, posing considerable challenges in engineering design and reliability assessment. Given that uncertain aerodynamic heating loads manifest as a stochastic field over time, conventional surrogate models, typically accepting scalar random variables as inputs, face limitations in modeling them. Consequently, this paper introduces an effective characterization approach utilizing proper orthogonal decomposition (POD) to represent the uncertainties of aerodynamic heating. The augmented snapshots matrix is used to reduce the dimension of the random field by the decoupling method of independently spatial and temporal bases. The random variables describing material properties and geometric thickness are also employed as inputs for probabilistic analyses. An uncoupled POD Gaussian process regression (UPOD-GPR) model is then established to achieve highly accurate solutions for transient heat conduction. The model takes random heat flux fields as inputs and thermal response fields as outputs. Using a typical multi-layer TPS and thermal structure as two examples, probabilistic analyses are conducted. The mean square relative error of a typical multi-layer TPS is less than 4%. For the thermal structure, the averaged absolute error of the radiation and insulation layer is less than 25 ∘C and 6 ∘C when the maximum reaches 1200 ∘C and 150 ∘C, respectively. This approach can provide accurate and rapid predictions of thermal responses for TPS and thermal structures throughout their entire operating time when furnished with input heat flux fields and structural parameters.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"93 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140366337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AerospacePub Date : 2024-03-29DOI: 10.3390/aerospace11040266
Fernando Montano, I. Dimino, Alberto Milazzo
{"title":"A Preliminary Evaluation of Morphing Horizontal Tail Design for UAVs","authors":"Fernando Montano, I. Dimino, Alberto Milazzo","doi":"10.3390/aerospace11040266","DOIUrl":"https://doi.org/10.3390/aerospace11040266","url":null,"abstract":"Morphing structures are a relatively new aircraft technology currently being investigated for a variety of applications, from civil to military. Despite the lack of literature maturity and its complexity, morphing wings offer significant aerodynamic benefits over a wide range of flight conditions, enabling reduced aircraft fuel consumption and airframe noise, longer range and higher efficiency. The aim of this study is to investigate the impact of morphing horizontal tail design on aircraft performance and flight mechanics. This study is conducted on a 1:5 scale model of a Preceptor N-3 Pup at its trim condition, of which the longitudinal dynamics is implemented in MATLAB. Starting from the original horizontal tail airfoil NACA 0012 with the elevator deflected at the trim value, this is modified by using the X-Foil tool to obtain a smooth morphing airfoil trailing edge shape with the same CLα. By comparing both configurations and their influence on the whole aircraft, the resulting improvements are evaluated in terms of stability in the short-period mode, reduction in the parasitic drag coefficient CD0, and increased endurance at various altitudes.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"30 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Multi-Fidelity Uncertainty Propagation Model for Multi-Dimensional Correlated Flow Field Responses","authors":"Jiangtao Chen, Jiao Zhao, Wei Xiao, Luogeng Lv, Wei Zhao, Xiaojun Wu","doi":"10.3390/aerospace11040263","DOIUrl":"https://doi.org/10.3390/aerospace11040263","url":null,"abstract":"Given the randomness inherent in fluid dynamics problems and limitations in human cognition, Computational Fluid Dynamics (CFD) modeling and simulation are afflicted with non-negligible uncertainties, casting doubts on the credibility of CFD. Scientifically and rigorously quantifying the uncertainty of CFD is paramount for assessing its credibility and informing engineering decisions. In order to quantify the uncertainty of multidimensional flow field responses stemming from uncertain model parameters, this paper proposes a method based on Gappy Proper Orthogonal Decomposition (POD) for supplementing high-fidelity flow field data within a framework that leverages POD and surrogate models. This approach enables the generation of corresponding high-fidelity flow fields from low-fidelity ones, significantly reducing the cost of high-fidelity flow field computation in uncertainty propagation modeling. Through an analysis of the impact of uncertainty in the coefficients of the Spalart–Allmaras (SA) turbulence model on the distribution of wall friction coefficients for the NACA0012 airfoil and pressure coefficients for the M6 wing, the proposed multi-fidelity modeling approach is demonstrated to offer significant advancements in both accuracy and efficiency compared to single-fidelity methods, providing a robust and efficient prediction model for large-scale random sampling.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"29 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140371887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regression Rate and Combustion Efficiency of Composite Hybrid Rocket Grains Based on Modular Fuel Units","authors":"Junjie Pan, Xin Lin, Zezhong Wang, Ruoyan Wang, Kun Wu, Jinhu Liang, Xilong Yu","doi":"10.3390/aerospace11040262","DOIUrl":"https://doi.org/10.3390/aerospace11040262","url":null,"abstract":"This study investigated combustion characteristics of composite fuel grains designed based on a modular fuel unit strategy. The modular fuel unit comprised a periodical helical structure with nine acrylonitrile–butadiene–styrene helical blades. A paraffin-based fuel was embedded between adjacent blades. Two modifications of the helical structure framework were researched. One mirrored the helical blades, and the other periodically extended the helical blades by perforation. A laboratory-scale hybrid rocket engine was used to investigate combustion characteristics of the fuel grains at an oxygen mass flux of 2.1–6.0 g/(s·cm2). Compared with the composite fuel grain with periodically extended helical blades, the modified composite fuel grains exhibited higher regression rates and a faster rise of regression rates as the oxygen mass flux increased. At an oxygen mass flux of 6.0 g/(s·cm2), the regression rate of the composite fuel grains with perforation and mirrored helical blades increased by 8.0% and 14.1%, respectively. The oxygen-to-fuel distribution of the composite fuel grain with mirrored helical blades was more concentrated, and its combustion efficiency was stable. Flame structure characteristics in the combustion chamber were visualized using a radiation imaging technique. A rapid increase in flame thickness of the composite fuel grains based on the modular unit was observed, which was consistent with their high regression rates. A simplified numerical simulation was carried out to elucidate the mechanism of the modified modular units on performance enhancement of the composite hybrid rocket grains.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"124 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140370355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AerospacePub Date : 2024-03-28DOI: 10.3390/aerospace11040264
Xuedong Li, Yuan Xie, Yumo Tian, Fengjiang An
{"title":"A Study on the Design and Implementation Technologies of EVA at the China Space Station","authors":"Xuedong Li, Yuan Xie, Yumo Tian, Fengjiang An","doi":"10.3390/aerospace11040264","DOIUrl":"https://doi.org/10.3390/aerospace11040264","url":null,"abstract":"Extravehicular activity (EVA) is a key point and a difficult point for manned spaceflight tasks, as well as an inevitable trend in the development of the manned spaceflight industry. Equipment maintenance, load installation, and extravehicular routing inspection via EVA on the track are necessary to guarantee the safety and reliability of the long-term in-orbit operation of the China Space Station. In this paper, a comprehensive analysis was conducted on the features of multiple tasks, diverse working modes, and strong systematic coupling during the EVA of the China Space Station (CSS). On this basis, the design, implementation technologies’ development, and in-orbit performance evaluation during EVA were expounded. In the space station system, an extravehicular reliability verification and evaluation system suitable for the requirement for EVA under the conditions of China’s multi-mission, multi-module combination, and repairable spacecraft was constructed. Finally, the in-orbit EVA implementation of the China Space Station since the launch of the core module to the present was summarized, and the subsequent application of the extravehicular technologies in manned lunar landing projects and optical modules was anticipated.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"5 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140373248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AerospacePub Date : 2024-03-27DOI: 10.3390/aerospace11040260
Hugo Valayer, Nathalie Bartoli, Mauricio Castaño-Aguirre, R. Lafage, Thierry Lefebvre, A. F. López-Lopera, Sylvain Mouton
{"title":"A Python Toolbox for Data-Driven Aerodynamic Modeling Using Sparse Gaussian Processes","authors":"Hugo Valayer, Nathalie Bartoli, Mauricio Castaño-Aguirre, R. Lafage, Thierry Lefebvre, A. F. López-Lopera, Sylvain Mouton","doi":"10.3390/aerospace11040260","DOIUrl":"https://doi.org/10.3390/aerospace11040260","url":null,"abstract":"In aerodynamics, characterizing the aerodynamic behavior of aircraft typically requires a large number of observation data points. Real experiments can generate thousands of data points with suitable accuracy, but they are time-consuming and resource-intensive. Consequently, conducting real experiments at new input configurations might be impractical. To address this challenge, data-driven surrogate models have emerged as a cost-effective and time-efficient alternative. They provide simplified mathematical representations that approximate the output of interest. Models based on Gaussian Processes (GPs) have gained popularity in aerodynamics due to their ability to provide accurate predictions and quantify uncertainty while maintaining tractable execution times. To handle large datasets, sparse approximations of GPs have been further investigated to reduce the computational complexity of exact inference. In this paper, we revisit and adapt two classic sparse methods for GPs to address the specific requirements frequently encountered in aerodynamic applications. We compare different strategies for choosing the inducing inputs, which significantly impact the complexity reduction. We formally integrate our implementations into the open-source Python toolbox SMT, enabling the use of sparse methods across the GP regression pipeline. We demonstrate the performance of our Sparse GP (SGP) developments in a comprehensive 1D analytic example as well as in a real wind tunnel application with thousands of training data points.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"34 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140375203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A CNN-GRU Hybrid Model for Predicting Airport Departure Taxiing Time","authors":"Ligang Yuan, Jing Liu, Haiyan Chen, Daoming Fang, Wenlu Chen","doi":"10.3390/aerospace11040261","DOIUrl":"https://doi.org/10.3390/aerospace11040261","url":null,"abstract":"Scene taxiing time is an important indicator for assessing the operational efficiency of airports as well as green airports, and it is also a fundamental parameter in flight regularity statistics. The accurate prediction of taxiing time can help decision makers to further optimize flight pushback sequences and improve airport operational efficiency while increasing flight punctuality. In this paper, we propose a hybrid deep learning model for departure taxiing time prediction based on the new influence factors of taxiing time. Taking Pudong International Airport as the research object, after analyzing the scene operation mode, we construct the origin–destination pairs (ODPs) with stand groups and runways and then propose two structure-related factors, corridor departure flow and departure flow proportion of ODP, as the new features. Based on the new feature set, we construct a departure taxiing dataset for training the prediction model. Then, a departure taxiing time prediction model based on convolutional neural networks (CNNs) and gated recurrent units (GRUs) is proposed, which uses a CNN model to extract the high-dimensional features from the taxiing data and then inputs them to a GRU model for taxiing time prediction. Finally, we conduct a series of comparison experiments on the historical taxiing dataset of Pudong Airport. The prediction results show that the proposed hybrid prediction model has the best performances compared with other deep learning models, and the proposed structure-related features have high correlations with departure taxiing time. The prediction results of taxiing time for different ODPs also verify the generalizability of the proposed model.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"20 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140377213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AerospacePub Date : 2024-03-26DOI: 10.3390/aerospace11040258
Pablo Brusola, S. García-Nieto, JV Salcedo, Miguel Martinez, Robert H. Bishop
{"title":"Fuzzy Modeling Framework Using Sector Non-Linearity Techniques for Fixed-Wing Aircrafts","authors":"Pablo Brusola, S. García-Nieto, JV Salcedo, Miguel Martinez, Robert H. Bishop","doi":"10.3390/aerospace11040258","DOIUrl":"https://doi.org/10.3390/aerospace11040258","url":null,"abstract":"This paper presents a mathematical modeling approach utilizing a fuzzy modeling framework for fixed-wing aircraft systems with the goal of creating a highly desirable mathematical representation for model-based control design applications. The starting point is a mathematical model comprising fifteen non-linear ordinary differential equations representing the dynamic and kinematic behavior applicable to a wide range of fixed-wing aircraft systems. Here, the proposed mathematical modeling framework is applied to the AIRBUS A310 model developed by ONERA. The proposed fuzzy modeling framework takes advantage of sector non-linearity red techniques to recast all the non-linear terms from the original model to a set of combined fuzzy rules. The result of this fuzzification is a more suitable mathematical description from the control system design point of view. Therefore, the combination of this fuzzy model and the wide range of control techniques available in the literature for such kind of models, like parallel and non-parallel distributed compensation control laws using linear matrix inequality optimization, enables the development of control algorithms that guarantee stability conditions for a wide range of operations points, avoiding the classical gain scheduling schemes, where the stability issues can be extremely challenging.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"117 40","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140380119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AerospacePub Date : 2024-03-26DOI: 10.3390/aerospace11040259
Stephen Schade, Robert Jaron, Lukas Klähn, Antoine Moreau
{"title":"Smart Blade Count Selection to Align Modal Propagation Angle with Stator Stagger Angle for Low-Noise Ducted Fan Designs","authors":"Stephen Schade, Robert Jaron, Lukas Klähn, Antoine Moreau","doi":"10.3390/aerospace11040259","DOIUrl":"https://doi.org/10.3390/aerospace11040259","url":null,"abstract":"The rotor–stator interaction noise is a major source of fan noise. Especially for low-speed fan stages, the tonal component is typically a dominant noise source. A challenge is to reduce this tonal noise, as it is typically perceived as unpleasant. Therefore, in this paper, we analytically, numerically and experimentally investigate an acoustic effect to lower the tonal noise excitation. Our study on an existing low-speed fan indicates a reduction in tonal interaction noise of more than 9 dB at the source if the excited acoustic modes propagate parallel to the stator leading edge angle. Moreover, a design-to-low-noise approach is demonstrated in order to apply this effect to two new fan stages with fewer stator than rotor blades. The acoustic design of both fans is determined by an appropriate choice of the rotor and stator blade numbers in order to align the modal propagation angle with the stator stagger angle. The blade geometries are obtained from aerodynamic optimization. Both fans provide similar aerodynamic but opposing acoustic radiation characteristics compared to the baseline fan and a significant tonal noise reduction resulting from the impact of the modal propagation angle on noise excitation. To ensure that this effect can also be applied to other low-speed fans, a design rule is derived and validated.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"78 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140377794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of Key Risk Hotspots in Mega-Airport Surface Based on Monte Carlo Simulation","authors":"Wen Tian, Xuefang Zhou, Jianan Yin, Yuchen Li, Yining Zhang","doi":"10.3390/aerospace11040254","DOIUrl":"https://doi.org/10.3390/aerospace11040254","url":null,"abstract":"The complex layout of the airport surface, coupled with interrelated vehicle behaviors and densely mixed traffic flows, frequently leads to operational conflict risks. To address this issue, research was conducted on the recognition of characteristics and risk assessment for airport surface operations in mixed traffic flows. Firstly, a surface topological network model was established based on the analysis of the physical structure features of the airport surface. Based on the Monte Carlo simulation method, the simulation framework for airport surface traffic operations was proposed, enabling the simulation of mixed traffic flows involving aircraft and vehicles. Secondly, from various perspectives, including topological structural characteristics, network vulnerabilities, and traffic complexity, a comprehensive system for feature indices and their measurement methods was developed to identify risk hotspots in mixed traffic flows on the airport surface, which facilitated the extraction of comprehensive risk elements for any node’s operation. Finally, a weighting rule for risk hotspot feature indices based on the CRITIC–entropy method was designed, and a risk assessment method for surface operations based on TOPSIS–gray relational analysis was proposed. This method accurately measured risk indices for airport surface operations hotspots. Simulations conducted at Shenzhen Bao’an International Airport demonstrate that the proposed methods achieve high simulation accuracy. The identified surface risk hotspots closely matched actual conflict areas, resulting in a 20% improvement in the accuracy of direct risk hotspot identification compared to simulation experiments. Additionally, 10.9% of nodes in the airport surface network were identified as risk hotspots, including 3 nodes with potential conflicts between aircraft and ground vehicles and 21 nodes with potential conflicts between aircraft. The proposed methods can effectively provide guidance for identifying potential “aircraft–vehicle” conflicts in complex airport surface layouts and scientifically support informed decisions in airport surface operation safety management.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":" 76","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140384141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}