{"title":"The Morozov's principle applied to data assimilation problems","authors":"L. Bourgeois, J. Dardé","doi":"10.1051/m2an/2022061","DOIUrl":"https://doi.org/10.1051/m2an/2022061","url":null,"abstract":"This paper is focused on the Morozov’s principle applied to an abstract data assimilation framework, with particular attention to three simple examples: the data assimilation problem for the Laplace equation, the Cauchy problem for the Laplace equation and the data assimilation problem for the heat equation. Those ill-posed problems are regularized with the help of a mixed type formulation which is proved to be equivalent to a Tikhonov regularization applied to a well-chosen operator. The main issue is that such operator may not have a dense range, which makes it necessary to extend well-known results related to the Morozov’s choice of the regularization parameter to that unusual situation. The solution which satisfies the Morozov’s principle is computed with the help of the duality in optimization, possibly by forcing the solution to satisfy given a priori constraints. Some numerical results in two dimensions are proposed in the case of the data assimilation problem for the Laplace equation.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74187566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acoustic waveguide with a dissipative inclusion","authors":"L. Chesnel, J. Heleine, S. Nazarov, J. Taskinen","doi":"10.1051/m2an/2023070","DOIUrl":"https://doi.org/10.1051/m2an/2023070","url":null,"abstract":"We consider the propagation of acoustic waves in a waveguide containing a penetrable dissipative inclusion. We prove that as soon as the dissipation, characterized by some coefficient η , is non zero, the scattering solutions are uniquely defined. Additionally, we give an asymptotic expansion of the corresponding scattering matrix when η → 0 + (small dissipation) and when η → +∞ (large dissipation). Surprisingly, at the limit η → +∞, we show that no energy is absorbed by the inclusion. This is due to the so-called skin-effect phenomenon and can be explained by the fact that the field no longer penetrates into the highly dissipative inclusion. These results guarantee that in monomode regime, the amplitude of the reflection coefficient has a global minimum with respect to η . The situation where this minimum is zero, that is when the device acts as a perfect absorber, is particularly interesting for certain applications. However it does not happen in general. In this work, we show how to perturb the geometry of the waveguide to create 2D perfect absorbers in monomode regime. Asymptotic expansions are justified by error estimates and theoretical results are supported by numerical illustrations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85649209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Guillet, F. Deluzet, G. Fubiani, L. Garrigues, J. Narski
{"title":"Sparse Grid reconstructions for Particle-In-Cell methods","authors":"C. Guillet, F. Deluzet, G. Fubiani, L. Garrigues, J. Narski","doi":"10.1051/m2an/2022055","DOIUrl":"https://doi.org/10.1051/m2an/2022055","url":null,"abstract":"In this article, we propose and analyse Particle-In-Cell (PIC)\u0000\u0000methods embedding sparse grid reconstruction as those introduced in [1, 2].\u0000\u0000The sparse grid reconstructions offer a significant improvement on the sta-\u0000\u0000tistical error of PIC schemes as well as a reduction in the complexity of the\u0000\u0000problem providing the electric field. Main results on the convergence of the\u0000\u0000electric field interpolant and conservation properties are provided in this pa-\u0000\u0000per. Besides, tailored sparse grid reconstructions, in the frame of the offset\u0000\u0000combination technique, are proposed to introduce PIC methods with improved\u0000\u0000efficiency. The methods are assessed numerically and compared to existing PIC\u0000\u0000schemes thanks to classical benchmarks with remarkable prospects for three\u0000\u0000dimensional computations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79353074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A study of the local dynamics of modified Patankar Dec and higher order modified Patankar-RK methods","authors":"Thomas Izgin, Philipp Offner","doi":"10.1051/m2an/2023053","DOIUrl":"https://doi.org/10.1051/m2an/2023053","url":null,"abstract":"Patankar schemes have attracted increasing interest in recent years because they preserve the positivity of the analytical solution of a production-destruction system (PDS) irrespective of the chosen time step size. Although they are now of great interest, for a long time it was not clear what stability properties such schemes have. Recently a new stability approach based on Lyapunov stability with an extension of the center manifold theorem has been proposed to study the stability properties of positivity preserving time integrators. In this work, we study the stability properties of the classical modified Patankar–Runge–Kutta schemes (MPRK) and the modified Patankar Deferred Correction (MPDeC) approaches. We prove that most of the considered MPRK schemes are stable for any time step size and compute the stability function of MPDeC. We investigate its properties numerically revealing that also most MPDeC are stable irrespective of the chosen time step size. Finally, we verify our theoretical results with numerical simulations.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81105229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fast second-order discretization scheme for the linearized Green-Naghdi system with absorbing boundary conditions","authors":"Gang Pang, Songsong Ji, X. Antoine","doi":"10.1051/m2an/2022051","DOIUrl":"https://doi.org/10.1051/m2an/2022051","url":null,"abstract":"In this paper, we present a fully discrete second-order finite-difference scheme with fast evaluation of the convolution involved in the absorbing boundary conditions to solve the one-dimensional linearized Green-Naghdi system. The Pad´e expansion of the square-root function in the complex plane is used to implement the fast convolution. By introducing a constant damping parameter into the governing equations, the convergence analysis is developed when the damping term fulfills some conditions. In addition, the scheme is stable and leads to a highly reduced computational cost and low memory storage. A numerical example is provided to support the theoretical analysis and to illustrate the performance of the fast numerical scheme.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74500495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computing effective diffusivities in 3D time-dependent chaotic flows with a convergent Lagrangian numerical method","authors":"Zhongjian Wang, J. Xin, Zhiwen Zhang","doi":"10.1051/m2an/2022049","DOIUrl":"https://doi.org/10.1051/m2an/2022049","url":null,"abstract":"In this paper, we study the convergence analysis for a robust stochastic structure-preserving Lagrangian numerical scheme in computing effective diffusivity of time-dependent chaotic flows, which are modeled by stochastic differential equations (SDEs). Our numerical scheme is based on a splitting method to solve the corresponding SDEs in which the deterministic subproblem is discretized using structure-preserving schemes while the random subproblem is discretized using the Euler-Maruyama scheme. We obtain a sharp and uniform-in-time convergence analysis for the proposed numerical scheme that allows us to accurately compute long-time solutions of the SDEs. As such, we can compute the effective diffusivity for time-dependent chaotic flows. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing effective diffusivity for the time-dependent Arnold-Beltrami-Childress (ABC) flow and Kolmogorov flow in three-dimensional space.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91198363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Truncation errors and modified equations for the lattice Boltzmann method via the corresponding Finite Difference schemes","authors":"T. Bellotti","doi":"10.1051/m2an/2023008","DOIUrl":"https://doi.org/10.1051/m2an/2023008","url":null,"abstract":"Lattice Boltzmann schemes are efficient numerical methods to solve a broad range of problems under the form of conservation laws. However, they suffer from a chronic lack of clear theoretical foundations. In particular, the consistency analysis and the derivation of the modified equations are still open issues. This has prevented, until today, to have an analogous of the Lax equivalence theorem for Lattice Boltzmann schemes. We propose a rigorous consistency study and the derivation of the modified equations for any lattice Boltzmann scheme under acoustic and diffusive scalings. This is done by passing from a kinetic (lattice Boltzmann) to a macroscopic (Finite Difference) point of view at a fully discrete level in order to eliminate the non-conserved moments relaxing away from the equilibrium. We rewrite the lattice Boltzmann scheme as a multi-step Finite Difference scheme on the conserved variables, as introduced in our previous contribution. We then perform the usual analyses for Finite Difference by exploiting its precise characterization using matrices of Finite Difference operators. Though we present the derivation of the modified equations until second-order under acoustic scaling, we provide all the elements to extend it to higher orders, since the kinetic-macroscopic connection is conducted at the fully discrete level. Finally, we show that our strategy yields, in a more rigorous setting, the same results as previous works in the literature.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81522390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A counterexample to analyticity in frictional dynamics","authors":"Christopher Roger Dance","doi":"10.1051/m2an/2022033","DOIUrl":"https://doi.org/10.1051/m2an/2022033","url":null,"abstract":"We consider the motion of a particle acted on by dry friction and a force that is an analytic function of time. We give a counterexample to the claim that such motions are given by analytic functions of time. Several published arguments concerning existence and uniqueness in unilateral dynamics with friction rely on the analyticity of such motions. The counterexample invalidates those arguments for motions in three or more dimensions.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89022148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengjiao Jiao, Yan Jiang, Chi-Wang Shu, Mengping Zhang
{"title":"Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws","authors":"Mengjiao Jiao, Yan Jiang, Chi-Wang Shu, Mengping Zhang","doi":"10.1051/m2an/2022037","DOIUrl":"https://doi.org/10.1051/m2an/2022037","url":null,"abstract":"In this paper, we study the error estimates to sufficiently smooth solutions of the nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) nite element methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is established for the proof of optimal L2 error estimates of the semi-discrete CDG schemes, and this condition is checked to be valid in one and two dimensions for polynomials of degree up to k = 8. Numerical experiments are given to verify the theoretical results.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78185936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Urban, Julian Henning, D. Palitta, V. Simoncini
{"title":"An ultraweak space-time variational formulation for the wave equation: Analysis and efficient numerical solution","authors":"K. Urban, Julian Henning, D. Palitta, V. Simoncini","doi":"10.1051/m2an/2022035","DOIUrl":"https://doi.org/10.1051/m2an/2022035","url":null,"abstract":"We introduce an ultraweak space-time variational formulation for the wave equation, prove its well-posedness (even in the case of minimal regularity) and optimal inf-sup stability. Then, we introduce a tensor product-style space-time Petrov-Galerkin discretization with optimal discrete inf-sup stability, obtained by a non-standard definition of the trial space. As a consequence, the numerical approximation error is equal to the residual, which is particularly useful for a posteriori error estimation.\u0000 For the arising discrete linear systems in space and time, we introduce efficient numerical solvers that appropriately exploit the equation structure, either at the preconditioning level or in the approximation phase by using a tailored Galerkin projection. This Galerkin method shows competitive behavior concerning wall-clock time, accuracy and memory as compared with a standard time-stepping method in particular in low regularity cases. Numerical experiments with a 3D (in space) wave equation illustrate our findings.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75265513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}