非线性标量守恒律中心不连续伽辽金方法光滑解的最优误差估计

IF 1.9 3区 数学 Q2 Mathematics
Mengjiao Jiao, Yan Jiang, Chi-Wang Shu, Mengping Zhang
{"title":"非线性标量守恒律中心不连续伽辽金方法光滑解的最优误差估计","authors":"Mengjiao Jiao, Yan Jiang, Chi-Wang Shu, Mengping Zhang","doi":"10.1051/m2an/2022037","DOIUrl":null,"url":null,"abstract":"In this paper, we study the error estimates to sufficiently smooth solutions of the nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) nite element methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is established for the proof of optimal L2 error estimates of the semi-discrete CDG schemes, and this condition is checked to be valid in one and two dimensions for polynomials of degree up to k = 8. Numerical experiments are given to verify the theoretical results.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws\",\"authors\":\"Mengjiao Jiao, Yan Jiang, Chi-Wang Shu, Mengping Zhang\",\"doi\":\"10.1051/m2an/2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the error estimates to sufficiently smooth solutions of the nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) nite element methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is established for the proof of optimal L2 error estimates of the semi-discrete CDG schemes, and this condition is checked to be valid in one and two dimensions for polynomials of degree up to k = 8. Numerical experiments are given to verify the theoretical results.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2022037\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022037","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了均匀笛卡尔网格上半离散中心不连续伽辽金(DG)有限元法非线性标量守恒律充分光滑解的误差估计。建立了半离散CDG格式的最优L2误差估计的一般证明方法,该方法具有显式可检验条件,并对k = 8次多项式在一维和二维上的有效性进行了检验。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal error estimates to smooth solutions of the central discontinuous Galerkin methods for nonlinear scalar conservation laws
In this paper, we study the error estimates to sufficiently smooth solutions of the nonlinear scalar conservation laws for the semi-discrete central discontinuous Galerkin (DG) nite element methods on uniform Cartesian meshes. A general approach with an explicitly checkable condition is established for the proof of optimal L2 error estimates of the semi-discrete CDG schemes, and this condition is checked to be valid in one and two dimensions for polynomials of degree up to k = 8. Numerical experiments are given to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
5.30%
发文量
27
审稿时长
6-12 weeks
期刊介绍: M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem. Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信