TechnologiesPub Date : 2024-07-16DOI: 10.3390/technologies12070115
Yuliang Wei, Chengcheng Yan, Shiro Kambe
{"title":"Oxygen Measurement in Cuprate Superconductors Using the Dissolved Oxygen/Chlorine Method","authors":"Yuliang Wei, Chengcheng Yan, Shiro Kambe","doi":"10.3390/technologies12070115","DOIUrl":"https://doi.org/10.3390/technologies12070115","url":null,"abstract":"We have developed a dissolved oxygen (DO) method with differential equation (DE) correction. We measured the oxygen content in La-based and Y-based superconductors, and succeeded in measuring the oxygen content simply in one-third of the time required by the iodometric titration method. However, there was a problem with Bi-based superconductors where the measured oxygen content was smaller compared to the iodometric titration method. We hypothesized that not only O2 but also Cl2 gas is generated when dissolving Bi-based superconductors and developed a dissolved oxygen/chlorine (DO/Cl) method with DE correction. This method uses only a dissolved oxygen sensor and a dissolved chlorine sensor to measure the dissolved oxygen and dissolved chlorine content in Bi2Sr2−xLaxCuOy, allowing for the calculation of copper valence and oxygen content. The results from the DO/Cl method with DE correction show that the measured copper valence and oxygen content differ very little from those obtained using the iodometric titration method, with discrepancies within 0.016 and 0.008, respectively. Additionally, this method reduces the measurement time by one-third compared to the iodometric titration method. The results demonstrate that the DO/Cl method with DE correction can effectively measure the copper valence and oxygen content in cuprate superconductors, and using hydrochloric acid as the experimental solution is superior to sulfuric acid and nitric acid.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"2 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-13DOI: 10.3390/technologies12070113
Ioannis Markoulidakis, Georgios Markoulidakis
{"title":"Probabilistic Confusion Matrix: A Novel Method for Machine Learning Algorithm Generalized Performance Analysis","authors":"Ioannis Markoulidakis, Georgios Markoulidakis","doi":"10.3390/technologies12070113","DOIUrl":"https://doi.org/10.3390/technologies12070113","url":null,"abstract":"The paper addresses the issue of classification machine learning algorithm performance based on a novel probabilistic confusion matrix concept. The paper develops a theoretical framework which associates the proposed confusion matrix and the resulting performance metrics with the regular confusion matrix. The theoretical results are verified based on a wide variety of real-world classification problems and state-of-the-art machine learning algorithms. Based on the properties of the probabilistic confusion matrix, the paper then highlights the benefits of using the proposed concept both during the training phase and the application phase of a classification machine learning algorithm.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"42 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-13DOI: 10.3390/technologies12070114
Jeffrey Bush, S. Benham, Monica Kaniamattam
{"title":"Development and Evaluation of an mHealth App That Promotes Access to 3D Printable Assistive Devices","authors":"Jeffrey Bush, S. Benham, Monica Kaniamattam","doi":"10.3390/technologies12070114","DOIUrl":"https://doi.org/10.3390/technologies12070114","url":null,"abstract":"Three-dimensional printing is an emerging service delivery method for on-demand access to customized assistive technology devices. However, barriers exist in locating and designing appropriate models and having the devices printed. The purpose of this work is to outline the development of an app, 3DAdapt, which allows users to overcome these issues by searching within a curated list of 3D printable assistive devices, customizing models that support it, and ordering the device to be printed by manufacturers linked within the app or shared with local 3D printing operators. The app integrates searching and filters based on the International Classification of Functioning, Disability, and Health, with the available devices including those developed from fieldwork collaborations with multiple professionals and students within clinical, community, and educational settings. It provides users the ability to customize select models to meet their needs. The model can then be shared, downloaded, or ordered from a third-party 3D printing service. This development and expert testing phase to assess feasibility and modify the app based on identified themes then prepared the team for the next phases of beta testing to reach the overall aim of 3DAdapt to connect individuals to affordable and customizable devices to increase independence and quality of life.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"45 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-12DOI: 10.3390/technologies12070112
I. Izonin, R.O. Tkachenko, O. Berezsky, Iurii Krak, Michal Kováč, M. Fedorchuk
{"title":"Improvement of the ANN-Based Prediction Technology for Extremely Small Biomedical Data Analysis","authors":"I. Izonin, R.O. Tkachenko, O. Berezsky, Iurii Krak, Michal Kováč, M. Fedorchuk","doi":"10.3390/technologies12070112","DOIUrl":"https://doi.org/10.3390/technologies12070112","url":null,"abstract":"Today, the field of biomedical engineering spans numerous areas of scientific research that grapple with the challenges of intelligent analysis of small datasets. Analyzing such datasets with existing artificial intelligence tools is a complex task, often complicated by issues like overfitting and other challenges inherent to machine learning methods and artificial neural networks. These challenges impose significant constraints on the practical application of these tools to the problem at hand. While data augmentation can offer some mitigation, existing methods often introduce their own set of limitations, reducing their overall effectiveness in solving the problem. In this paper, the authors present an improved neural network-based technology for predicting outcomes when analyzing small and extremely small datasets. This approach builds on the input doubling method, leveraging response surface linearization principles to improve performance. Detailed flowcharts of the improved technology’s operations are provided, alongside descriptions of new preparation and application algorithms for the proposed solution. The modeling, conducted using two biomedical datasets with optimal parameters selected via differential evolution, demonstrated high prediction accuracy. A comparison with several existing methods revealed a significant reduction in various errors, underscoring the advantages of the improved neural network technology, which does not require training, for the analysis of extremely small biomedical datasets.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"3 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-11DOI: 10.3390/technologies12070111
Nuwan Pallewela, D. Alahakoon, A. Adikari, John E. Pierce, ML Rose
{"title":"Optimizing Speech Emotion Recognition with Machine Learning Based Advanced Audio Cue Analysis","authors":"Nuwan Pallewela, D. Alahakoon, A. Adikari, John E. Pierce, ML Rose","doi":"10.3390/technologies12070111","DOIUrl":"https://doi.org/10.3390/technologies12070111","url":null,"abstract":"In today’s fast-paced and interconnected world, where human–computer interaction is an integral component of daily life, the ability to recognize and understand human emotions has emerged as a crucial facet of technological advancement. However, human emotion, a complex interplay of physiological, psychological, and social factors, poses a formidable challenge even for other humans to comprehend accurately. With the emergence of voice assistants and other speech-based applications, it has become essential to improve audio-based emotion expression. However, there is a lack of specificity and agreement in current emotion annotation practice, as evidenced by conflicting labels in many human-annotated emotional datasets for the same speech segments. Previous studies have had to filter out these conflicts and, therefore, a large portion of the collected data has been considered unusable. In this study, we aimed to improve the accuracy of computational prediction of uncertain emotion labels by utilizing high-confidence emotion labelled speech segments from the IEMOCAP emotion dataset. We implemented an audio-based emotion recognition model using bag of audio word encoding (BoAW) to obtain a representation of audio aspects of emotion in speech with state-of-the-art recurrent neural network models. Our approach improved the state-of-the-art audio-based emotion recognition with a 61.09% accuracy rate, an improvement of 1.02% over the BiDialogueRNN model and 1.72% over the EmoCaps multi-modal emotion recognition models. In comparison to human annotation, our approach achieved similar results in identifying positive and negative emotions. Furthermore, it has proven effective in accurately recognizing the sentiment of uncertain emotion segments that were previously considered unusable in other studies. Improvements in audio emotion recognition could have implications in voice-based assistants, healthcare, and other industrial applications that benefit from automated communication.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"134 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141656409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-09DOI: 10.3390/technologies12070108
Kevin J Mena-Guevara, D. Piñero, María José Luque, D. de Fez
{"title":"The Measurement of Contrast Sensitivity in Near Vision: The Use of a Digital System vs. a Conventional Printed Test","authors":"Kevin J Mena-Guevara, D. Piñero, María José Luque, D. de Fez","doi":"10.3390/technologies12070108","DOIUrl":"https://doi.org/10.3390/technologies12070108","url":null,"abstract":"In recent years, there has been intense development of digital diagnostic tests for vision. All of these tests must be validated for clinical use. The current study enrolled 51 healthy individuals (age 19–72 years) in which achromatic contrast sensitivity function (CSF) in near vision was measured with the printed Vistech VCTS test (Stereo Optical Co., Inc., Chicago, IL, USA) and the Optopad-CSF (developed by our research group to be used on an iPad). Likewise, chromatic CSF was evaluated with a digital test. Statistically significant differences between tests were only found for the two higher spatial frequencies evaluated (p = 0.012 and <0.001, respectively). The mean achromatic index of contrast sensitivity (ICS) was 0.02 ± 1.07 and −0.76 ± 1.63 for the Vistech VCTS and Optopad tests, respectively (p < 0.001). The ranges of agreement between tests were 0.55, 0.76, 0.78, and 0.69 log units for the spatial frequencies of 1.5, 3, 6, and 12 cpd, respectively. The mean chromatic ICS values were −20.56 ± 0.96 and −0.16 ± 0.99 for the CSF-T and CSF-D plates, respectively (p < 0.001). Furthermore, better achromatic, red–green, and blue–yellow CSF values were found in the youngest groups. The digital test allows the fast measurement of near-achromatic and chromatic CSF using a colorimetrically calibrated iPad, but the achromatic measures cannot be used interchangeably with those obtained with a conventional printed test.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"45 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141663793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-09DOI: 10.3390/technologies12070107
Ammir Rojas, Julio Ronceros, Carlos Raymundo, Gianpierre Zapata, Leonardo Vinces, Gustavo Ronceros
{"title":"Numerical Simulation and Design of a Mechanical Structure of an Ankle Exoskeleton for Elderly People","authors":"Ammir Rojas, Julio Ronceros, Carlos Raymundo, Gianpierre Zapata, Leonardo Vinces, Gustavo Ronceros","doi":"10.3390/technologies12070107","DOIUrl":"https://doi.org/10.3390/technologies12070107","url":null,"abstract":"This article presents the numerical simulation and design of an ankle exoskeleton oriented to elderly users. For the design, anatomical measurements were taken from a user of this age group to obtain an ergonomic, resistant, and exceptionally reliable mechanical structure. In addition, the design was validated to support a “weight range” of users between 50 and 80 kg in order to evaluate the reaction of the mechanism within the range of loads generated in relation to the first principal stress, the safety coefficient, the Von Mises stress, and principal deformations, for which the 3D CAD software Autodesk Inventor and theoretical correlations were used to calculate the displacement and rotation angles of the ankle in the structure. Likewise, two types of materials were evaluated: ABS (acrylonitrile butadiene styrene) and a polymer reinforced with carbon fiber. Finally, the designed pieces were assembled with the guarantee that the mobility of the system had been validated through the numerical simulation environment, highlighting that by being generated through 3D printing, manufacturing costs are reduced, allowing them to be accessible and ensuring that more people can benefit from this ankle exoskeleton.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"35 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-09DOI: 10.3390/technologies12070109
Antonio Trejo-Morales, E. Franco-Urquiza, Hansell David Devilet-Castellanos, Darío Bringas-Posadas
{"title":"HUB3D: Intelligent Manufacturing HUB System","authors":"Antonio Trejo-Morales, E. Franco-Urquiza, Hansell David Devilet-Castellanos, Darío Bringas-Posadas","doi":"10.3390/technologies12070109","DOIUrl":"https://doi.org/10.3390/technologies12070109","url":null,"abstract":"HUB3D represents a cutting-edge solution for managing and operating a 3D printer farm through the integration of advanced hardware and software. It features intuitive, responsive interfaces that support seamless interaction across various devices. Leveraging cloud services ensures the system’s stability, security, and scalability, enabling users from diverse locations to effortlessly upload and manage their 3D printing projects. The hardware component includes a purpose-built rack capable of housing up to four 3D printers, each synchronized and managed by a manipulator arm controlled via Raspberry Pi technology. This setup facilitates continuous operation and high automation, optimizing production efficiency and reducing downtime significantly. This integrated approach positions HUB3D at the forefront of additive manufacturing management. By combining robust hardware capabilities with sophisticated software functionalities and cloud integration, the system offers unparalleled advantages. It supports continuous manufacturing processes, enhances workflow efficiency, and enables remote monitoring and management of printing operations. Overall, HUB3D’s innovative design and comprehensive features cater to both individual users and businesses seeking to streamline 3D printing workflows. With scalability, automation, and remote accessibility at its core, HUB3D represents a pivotal advancement in modern manufacturing technology, promising increased productivity and operational flexibility in the realm of additive manufacturing.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"41 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-09DOI: 10.3390/technologies12070110
Imran Khan, Qazi Ejaz Ali, Hassan Jalil Hadi, Naveed Ahmad, Gauhar Ali, Yue Cao, M. Alshara
{"title":"Securing Blockchain-Based Supply Chain Management: Textual Data Encryption and Access Control","authors":"Imran Khan, Qazi Ejaz Ali, Hassan Jalil Hadi, Naveed Ahmad, Gauhar Ali, Yue Cao, M. Alshara","doi":"10.3390/technologies12070110","DOIUrl":"https://doi.org/10.3390/technologies12070110","url":null,"abstract":"A supply chain (SC) encompasses a network of businesses, individuals, events, data, and resources orchestrating the movement of goods or services from suppliers to customers. Leveraging a blockchain-based platform, smart contracts play a pivotal role in aligning business logic and tracking progress within supply chain activities. Employing two distinct ledgers, namely Hyperledger and Ethereum, introduces challenges in handling the escalating volume of data and addressing the technical expertise gap related to supply chain management (SCM) tools in blockchain technology. Within the domain of blockchain-based SCM, the growing volume of data activities introduces challenges in the efficient regulation of data flow and the assurance of privacy. To tackle these challenges, a straightforward approach is recommended to manage data growth and thwart unauthorized entries or spam attempts within blockchain ledgers. The proposed technique focuses on validating hashes to ensure blockchain integrity. Emphasizing the authentication of sensitive data on the blockchain to bolster SCM, this approach compels applications to shoulder increased accountability. The suggested technique involves converting all data into textual format, implementing code encryption, and establishing permission-based access control. This strategy aims to address inherent weaknesses in blockchain within SCM. The results demonstrate the efficacy of the proposed technique in providing security and privacy for various types of data within SCM. Overall, the approach enhances the robustness of blockchain-based SCM, offering a comprehensive solution to navigate evolving challenges in data management and privacy assurance.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"35 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141663524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TechnologiesPub Date : 2024-07-07DOI: 10.3390/technologies12070105
Michalis Pingos, Andreas S. Andreou
{"title":"Discovering Data Domains and Products in Data Meshes Using Semantic Blueprints","authors":"Michalis Pingos, Andreas S. Andreou","doi":"10.3390/technologies12070105","DOIUrl":"https://doi.org/10.3390/technologies12070105","url":null,"abstract":"Nowadays, one of the greatest challenges in data meshes revolves around detecting and creating data domains and data products for providing the ability to adapt easily and quickly to changing business needs. This requires a disciplined approach to identify, differentiate and prioritize distinct data sources according to their content and diversity. The current paper tackles this highly complicated issue and suggests a standardized approach that integrates the concept of data blueprints with data meshes. In essence, a novel standardization framework is proposed that creates data products using a metadata semantic enrichment mechanism, the latter also offering data domain readiness and alignment. The approach is demonstrated using real-world data produced by multiple sources in a poultry meat production factory. A set of functional attributes is used to qualitatively compare the proposed approach to existing data structures utilized in storage architectures, with quite promising results. Finally, experimentation with different scenarios varying in data product complexity and granularity suggests a successful performance.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141670467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}