{"title":"An improved constitutive model for rapid fatigue properties evaluation based on fatigue damage entropy","authors":"","doi":"10.1016/j.euromechsol.2024.105483","DOIUrl":"10.1016/j.euromechsol.2024.105483","url":null,"abstract":"<div><div>A constitutive model, which reflects the non-linear response association between microstructural motion and thermodynamic entropy production, is improved in this study. Two critical stress amplitudes associated with two microstructural movement mechanisms are considered in the improved constitutive model. The determination procedures for the parameters of the presented model are developed. Entropy generation data from three materials computed by two calculation methodologies, collected from the experiment and literature, are used to validate the improved model. Subsequently, a rapid fatigue life estimation method is proposed by using the accumulated entropy corresponding to fatigue damage, i.e. FFE, related to irreversible inelastic microstructural motion. Fatigue tests of welded joints fabricated by Q310NQL2 and Q345NQR2 steels, Q235 steel specimens, as well as experimental data, stainless steel specimens, collected from the literature, are employed to determine the values of the parameters of the developed model. The model is then used to forecast the <em>S–N</em> curve of butt joints with a 50% survival probability, and on this basis, the <em>S–N</em> curve with a certain confidence level is well estimated by the improved statistical method. This enhanced model may offer a fast forecast of the <em>P–S–N</em> curve at a certain confidence level within a limited set of tested data ranges.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Topological elastic wave transport and manipulation in three-dimensional metamaterials stacked with sandwich plates","authors":"","doi":"10.1016/j.euromechsol.2024.105486","DOIUrl":"10.1016/j.euromechsol.2024.105486","url":null,"abstract":"<div><div>Topological metamaterials demonstrate unprecedented wave manipulation abilities with topologically protected robustness, which have been extensively investigated in one-dimensional (1D) and two-dimensional (2D) mechanical systems, but less explored in three-dimensional (3D) systems. In this study, a 3D topological mechanical metamaterial with periodically stacked sandwich metamaterial plates is proposed to achieve 2D topological surface wave transport in a relatively low-frequency range. An innovative chiral compression-torsion coupling core is employed on the sandwich metamaterial plate to lower the band frequency. Analogous to the quantum valley Hall effect, the two-fold topological nodal line is lifted by breaking the spatial inversion symmetry, opening a topological band gap. By supercell analysis, the topological interface state is demonstrated to appear at the interface of two topologically different domains, and the topological boundary state can also be excited under appropriate free or fixed boundary conditions. Taking advantage of the 3D periodicity, the wave propagation based on both topological interface states and boundary states is examined in both 2D flat plates and 3D structures, realizing 1D topological waveguide and 2D topological surface wave transport respectively. It is found that mode symmetry matching is crucial for constructing the topological wave transport with both interface and boundary states. Leveraging the dependence of boundary states on boundary conditions, this work innovatively presents route-switchable and layer-selective wave manipulation by controlling boundary conditions without complicated structure design, enriching the strategies for tunable elastic wave manipulation. Besides, the topologically protected surface wave transport is demonstrated by introducing defects and disorders. These findings provide new insights into the topological transport of elastic waves in 3D mechanical metamaterials and contribute to the development of intelligent and robust devices for various purposes, such as vibration mitigation, energy harvesting, and signal sensing.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computational modeling of weld-line impacts on mechanical behavior of fiber-reinforced thermoplastics","authors":"","doi":"10.1016/j.euromechsol.2024.105485","DOIUrl":"10.1016/j.euromechsol.2024.105485","url":null,"abstract":"<div><div>The areas where the weld line is located are weak areas in terms of impact strength and tensile strength, which negatively affects the overall strength of the final product. It can also cause visual defects on the surface and create an aesthetically undesirable situation. The injection molding process introduces anisotropic behaviors in materials, particularly in weld-line areas, which are proned to mechanical weaknesses. This study aims to enhance the predictability of the mechanical performance of injection-molded fiber-reinforced thermoplastic composites (FRPs) through a comprehensive computational modeling technique. By using software such as MOLDEX3D and DIGIMAT RP, this research integrates real-time data on fiber orientation and weld-line effects into the finite element analysis (FEA) models. Simulations of 40% glass fiber reinforced polyamide (PA6) revealed the impact of different gate numbers on mechanical strength, highlighting the influence of weld-line regions. The findings suggest that incorporating fiber orientation and weld-line data significantly improves the accuracy of FEA models, leading to better predictions in the performance of the parts.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Driving response analysis of twisted and coiled polymer actuators by considering the viscoelastic behavior of their precursor fibers","authors":"","doi":"10.1016/j.euromechsol.2024.105484","DOIUrl":"10.1016/j.euromechsol.2024.105484","url":null,"abstract":"<div><div>Twisted and coiled polymer actuators (TCPA) represent a type of artificial muscle predominantly composed of viscoelastic polymers in their precursor fibers. An integral form of the viscoelastic constitutive model has been developed to predict the mechanical deformation of the precursor fibers. The model successfully accounts for the first-cycle effect and the creep deformation near the glass transition temperature of the precursor fibers. Combined with the multilayer model by Gao and Wang (2024 Smart Mater. Struct. <strong>33</strong> 045031), which predicts the effective mechanical and thermal properties of TCPA, the proposed viscoelastic constitutive model accurately predicts the thermo-mechanical response of TCPA under the heating and cooling cycle and applied loads. It is noted that the driving strain of TCPA is sensitive to the heating and cooling cycles. When the cycle duration is short, the proposed viscoelastic model can be simplified to a linear elastic model. The numerical implementation of the viscoelastic constitutive model is detailed, with validation conducted on two polymer materials, polypropylene, and polyamide 66. The proposed constitutive model can effectively predict the driving response of TCPA under complex loading conditions.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elastodynamic analysis of rotating solids by novel nodal position finite element method","authors":"","doi":"10.1016/j.euromechsol.2024.105478","DOIUrl":"10.1016/j.euromechsol.2024.105478","url":null,"abstract":"<div><div>This study develops a novel 8-node isoparametric hexahedral element using the Nodal Position Finite Element Method (NPFEM) for elastodynamic analysis of rotating solids. The element also incorporates the flexural modes directly into its element shape function to alleviate the shear locking when modeling the bending deformation of solids. Unlike conventional displacement-based finite element methods, which require the decoupling of elastic deformation from rigid-body motions, the NPFEM eliminates this process by directly representing strain and kinetic energies through nodal position coordinates, which avoids potential approximation errors in the decoupling process. To validate the accuracy and efficacy of this new NPFEM solid element, numerical simulations of a beam under static and dynamic loads are conducted and benchmarked against the theoretical solutions. Then, dynamic analysis of a rotating blade demonstrates that the NPFEM element can directly account for the centrifugal stiffening effect and superharmonic resonance of rotating blades without resorting to conventional methods. The successful implementation of this NPFEM element in complex simulations highlights its potential to provide significant advancements in computational mechanics.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A diffuse interface model for electro-chemo-mechanical systems","authors":"","doi":"10.1016/j.euromechsol.2024.105470","DOIUrl":"10.1016/j.euromechsol.2024.105470","url":null,"abstract":"<div><div>Electro-chemo-mechanics plays a critical role in the performance and longevity of energy storage systems, such as lithium-ion batteries and hydrogen energy storage. These systems involve multi-material composites comprising both liquid and solid phases, with their behavior influenced by processes in the bulk phases and at their interfaces.</div><div>Traditional multi-phase theoretical and numerical models often adopt a discrete representation of material interfaces, introducing discontinuities in the problem’s fields. The numerical implementation is carried out using special interface elements, a methodology that requires conformal meshes and is not always supported by open-source computing platforms.</div><div>This paper introduces a novel modeling framework that employs a diffuse representation of material interfaces, inspired by the phase-field method. From a modeling perspective, this approach allows for the consistent coupling of bulk and interface electro-chemo-mechanical processes, adhering to thermodynamic principles. Numerically, the proposed model is particularly suited for simulating real material microstructures using regular meshes, facilitating advanced numerical implementations.</div><div>The methodology is detailed for a generic multi-material electro-chemo-mechanical system and applied specifically to Li-ion batteries. Numerical examples demonstrate the model’s effectiveness in simulating coupled interface processes without resorting to interface elements. This work provides a significant advancement in the simulation of electro-chemo-mechanical systems, offering a robust tool for studying the complex interplay of bulk and interface processes.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of the effect of interfacial damage and friction on stress transfer in short fiber-reinforced composites","authors":"","doi":"10.1016/j.euromechsol.2024.105476","DOIUrl":"10.1016/j.euromechsol.2024.105476","url":null,"abstract":"<div><div>The purpose of this study is to investigate the influence of different stages of different interfaces evolution under external forces on stress transfer within composite materials, which is crucial for analyzing reinforcement mechanisms in composite materials. Analytical solutions are derived to explore the impact of these distinct phases, both at the interfaces along the fiber length direction and at the fiber ends, on the complex stress distribution profiles within composite materials. Furthermore, the frictional effect at the interface serves to impede the debonding process in the composite. Under the same load, the debonding length of the interface decreases as the frictional effect increases. The increase in fiber aspect ratio (AR) effectively reduces the length of the damage and debonding interface and increases the axial fiber stress. Additionally, the theoretical results agree well with numerical simulation and experimental results. In essence, this model provides analytical solutions that are instrumental for analyzing stress transfer in fiber-reinforced composites during different stages of interface evolution.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexural behaviors of asymmetric Re-entrant auxetic honeycombs","authors":"","doi":"10.1016/j.euromechsol.2024.105475","DOIUrl":"10.1016/j.euromechsol.2024.105475","url":null,"abstract":"<div><div>A family of negative Poisson's ratio honeycombs with asymmetric base units and potential applications in civil and marine industries are introduced by introducing asymmetricities to the geometry of regular re-entrant unit cell. These structures, namely the single symmetry-broken re-entrant (SSR), double symmetry-broken re-entrant (DSR), and hybrid symmetry-broken re-entrant (HSR) honeycomb lattices, are fabricated through fused filament fabrication and subjected to experimental three-point bending (TPB) experiments and simulations. The novel designs showcase exceptional specific energy absorption (SEA) attributes compared to the regular metamaterial, with the SSR structure exhibiting a remarkable 147.2% higher SEA. The asymmetric metamaterials also demonstrate higher flexural modulus (E<sub>f</sub>) compared to the benchmark design, with the SSR and DSR models boasting approximately 29% and 19% higher E<sub>f</sub>, respectively. Studies on design parameters show that internal angle of unit cells that creates the asymmetricity affects the flexural performance of the unique auxetic honeycombs, significantly. Finally, parametric investigation on out-of-plane bending of the honeycombs showed the dominance of all asymmetric-unit honeycombs over the benchmark due to having organized self-contact regions. The SSR and DSR structures own about 51% and 39% higher SEA than the benchmark honeycomb under out-of-plane TPB, respectively.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A microstructural defect-orientation informed phase field model","authors":"","doi":"10.1016/j.euromechsol.2024.105472","DOIUrl":"10.1016/j.euromechsol.2024.105472","url":null,"abstract":"<div><div>Micro-cracks, micro-voids and other such defects, which typically coalesce to form macroscopic cracks, could be represented through incompatible, local rotations of material points, i.e. micro-regions. Specifically, based on a micropolar or Cosserat continuum-like hypothesis that requires attaching directors to material points, we track the evolving frame rotation and hence the microstructural orientation during quasi-brittle damage. We introduce a critical energy release rate incorporating the wryness tensor, which in turn is a function of the micro-rotation field and its gradient within the damaged region. The (pseudo) rotation field appears as additional degrees of freedom to describe a frame field, whose evolution is particularly significant within a diffused region of evolving damage as obtained through a phase-field formulation of brittle fracture. We emphasize that, unlike micropolar continua where it contributes to elastic energy, the wryness tensor appears only in the fracture energy in our approach. Thus, without damage, the solid conforms to the classical continuum. By making suitable modifications to the terms within the elastic energy and applying the principle of virtual work, we arrive at the governing partial differential equations (PDEs). For assessing the proposed framework, we choose a specific form of energy density and demonstrate, through numerical examples, the effect of the newly introduced parameters. The classical phase-field model is readily recovered by switching off the micro-rotation. Additionally, we explore a potential application of this model in representing and propagating initial defects.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Kagome-based functionally graded beams optimized for flexural loadings","authors":"","doi":"10.1016/j.euromechsol.2024.105474","DOIUrl":"10.1016/j.euromechsol.2024.105474","url":null,"abstract":"<div><div>This study is concerned with the development of an innovative beam geometry based on a tessellation of Kagome unit cells and the improvement of its geometry with the aim of increasing its flexural properties. This aspect was achieved by generating a functionally graded metamaterial structure based on a novel approach that considers the well-established analytical beam theory models as the basis of for the optimization of the structural parameters of the unit cells at an individual level. The starting premise is that the optimal strut thickness variation with the height of the beam will cause the material to yield uniformly in the critical cross-section. Preliminary studies were conducted in order to numerically determine the variation of the stiffness and the strength of the Kagome structure with the thickness of its struts. Considering the equivalent stress distribution during bending in the critical cross-section, an optimal variation of the stiffness with the height of the beam was evaluated. Based on these results, different values for the strut diameter were imposed at corresponding coordinates relative to the neutral axis, assuring a continuous transition across the height of the beam. The flexural properties of the developed functionally graded structure were evaluated using finite element analyses and determined superior characteristics when compared with the data obtained from simulations performed on an uniform Kagome beam with of the same mass. The investigated structures were manufactured through stereolithography and subjected to three-point bending tests, the results being in agreement with the numerical data, thus validating the design.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}