Indiana University Mathematics Journal最新文献

筛选
英文 中文
Validity of Whitham's modulation equations for dissipative systems with a conservation law: Phase dynamics in a generalized Ginzburg-Landau system 具有守恒律的耗散系统的Whitham调制方程的有效性:广义金兹堡-朗道系统的相动力学
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-13 DOI: 10.1512/iumj.2023.72.9297
T. Haas, B. D. Rijk, G. Schneider
{"title":"Validity of Whitham's modulation equations for dissipative systems with a conservation law: Phase dynamics in a generalized Ginzburg-Landau system","authors":"T. Haas, B. D. Rijk, G. Schneider","doi":"10.1512/iumj.2023.72.9297","DOIUrl":"https://doi.org/10.1512/iumj.2023.72.9297","url":null,"abstract":"It is well-established that Whitham's modulation equations approximate the dynamics of slowly varying periodic wave trains in dispersive systems. We are interested in its validity in dissipative systems with a conservation law. The prototype example for such a system is the generalized Ginzburg-Landau system that arises as a universal amplitude system for the description of a Turing-Hopf bifurcation in spatially extended pattern-forming systems with neutrally stable long modes. In this paper we prove rigorous error estimates between the approximation obtained through Whitham's modulation equations and true solutions to this Ginzburg-Landau system. Our proof relies on analytic smoothing, Cauchy-Kovalevskaya theory, energy estimates in Gevrey spaces, and a local decomposition in Fourier space, which separates center from stable modes and uncovers a (semi)derivative in front of the relevant nonlinear terms.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46578815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Convergence over fractals for the Schroedinger equation 薛定谔方程的分形收敛性
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-07 DOI: 10.1512/iumj.2022.71.9302
R. Lucà, F. Ponce-Vanegas
{"title":"Convergence over fractals for the Schroedinger equation","authors":"R. Lucà, F. Ponce-Vanegas","doi":"10.1512/iumj.2022.71.9302","DOIUrl":"https://doi.org/10.1512/iumj.2022.71.9302","url":null,"abstract":"We consider a fractal refinement of the Carleson problem for the Schr\"odinger equation, that is to identify the minimal regularity needed by the solutions to converge pointwise to their initial data almost everywhere with respect to the $alpha$-Hausdorff measure ($alpha$-a.e.). We extend to the fractal setting ($alpha<n$) a recent counterexample of Bourgain cite{Bourgain2016}, which is sharp in the Lebesque measure setting ($alpha = n$). In doing so we recover the necessary condition from cite{zbMATH07036806} for pointwise convergence~$alpha$-a.e. and we extend it to the range $n/2<alpha leq (3n+1)/4$.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42061561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Qualitative analysis of solutions for the generalized Zakharov equations with magnetic field in mathbb{R}^d mathbb{R}^d中具有磁场的广义Zakharov方程解的定性分析
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/IUMJ.2021.70.8121
Xing-Ping Wu
{"title":"Qualitative analysis of solutions for the generalized Zakharov equations with magnetic field in mathbb{R}^d","authors":"Xing-Ping Wu","doi":"10.1512/IUMJ.2021.70.8121","DOIUrl":"https://doi.org/10.1512/IUMJ.2021.70.8121","url":null,"abstract":"","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66764180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The quantum flag manifold SU_q(3)/mathbb{t}^2 as an example of a noncommutative sphere bundle 量子标志流形SU_q(3)/mathbb{t}^2作为非交换球束的一个例子
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/iumj.2021.70.8656
T. Brzeziński, W. Szymański
{"title":"The quantum flag manifold SU_q(3)/mathbb{t}^2 as an example of a noncommutative sphere bundle","authors":"T. Brzeziński, W. Szymański","doi":"10.1512/iumj.2021.70.8656","DOIUrl":"https://doi.org/10.1512/iumj.2021.70.8656","url":null,"abstract":"","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66765051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic cones and boundaries of CAT(0) spaces CAT(0)空间的渐近锥与边界
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/IUMJ.2021.70.8552
Curtis Kent, Russell Ricks
{"title":"Asymptotic cones and boundaries of CAT(0) spaces","authors":"Curtis Kent, Russell Ricks","doi":"10.1512/IUMJ.2021.70.8552","DOIUrl":"https://doi.org/10.1512/IUMJ.2021.70.8552","url":null,"abstract":"We explore the relationships between the asymptotic cones of a CAT(0) space and its boundary under both the standard visual (i.e. cone) topology and the Tits metric. We show that the set of asymptotic cones of a proper cocompact CAT(0) space admits canonical connecting maps under which the direct limit is isometric to the Euclidean cone on the Tits boundary. We also demonstrate how maps between asymptotic cones induce maps between Tits boundaries, which we use to show that virtually free Abelian groups are exactly the CAT(0) groups with compact Tits boundary.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66764240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the decomposition of the De Rham complex on formal schemes 关于形式方案上De Rham复合体的分解
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/IUMJ.2021.70.8574
Leovigildo Alonso Tarrío, A. López, M. Rodríguez
{"title":"On the decomposition of the De Rham complex on formal schemes","authors":"Leovigildo Alonso Tarrío, A. López, M. Rodríguez","doi":"10.1512/IUMJ.2021.70.8574","DOIUrl":"https://doi.org/10.1512/IUMJ.2021.70.8574","url":null,"abstract":"","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66764575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wild boundary behaviour of homomorphic functions in domains of C^N C^N域上同态函数的野边界行为
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/iumj.2021.70.8749
S. Charpentier, L. Kosinski
{"title":"Wild boundary behaviour of homomorphic functions in domains of C^N","authors":"S. Charpentier, L. Kosinski","doi":"10.1512/iumj.2021.70.8749","DOIUrl":"https://doi.org/10.1512/iumj.2021.70.8749","url":null,"abstract":"Given a domain of holomorphy D in C , N ≥ 2, we show that the set of holomorphic functions in D whose cluster sets along any finite length paths to the boundary of D is maximal, is residual, densely lineable and spaceable in the spaceO(D) of holomorphic functions in D. Besides, if D is a strictly pseudoconvex domain in C , and if a suitable family of smooth curves γ(x, r), x ∈ bD, r ∈ [0, 1), ending at a point of bD is given, then we exhibit a spaceable, densely lineable and residual subset of O(D), every element f of which satisfies the following property: For any measurable function h on bD, there exists a sequence (rn)n ∈ [0, 1) tending to 1, such that f ◦ γ(x, rn)→ h(x), n→∞, for almost every x in bD.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66765110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Noisy tug of war games for the $p$-Laplacian: 1 < p < $infty$ 吵吵闹闹的拔河游戏$p$ -拉普拉斯:1 < p < $infty$
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/IUMJ.2021.70.8358
M. Lewicka
{"title":"Noisy tug of war games for the $p$-Laplacian: 1 < p < $infty$","authors":"M. Lewicka","doi":"10.1512/IUMJ.2021.70.8358","DOIUrl":"https://doi.org/10.1512/IUMJ.2021.70.8358","url":null,"abstract":"","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66764441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The limit as $pto 1$ of the higher eigenvalues of the $p$-Laplacian operator $Delta_p$ p$-拉普拉斯算子$Delta_p$的高特征值在$p$到$ 1$时的极限
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/IUMJ.2021.70.8563
J. S. D. Lis, S. S. D. León
{"title":"The limit as $pto 1$ of the higher eigenvalues of the $p$-Laplacian operator $Delta_p$","authors":"J. S. D. Lis, S. S. D. León","doi":"10.1512/IUMJ.2021.70.8563","DOIUrl":"https://doi.org/10.1512/IUMJ.2021.70.8563","url":null,"abstract":"","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66764402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The L_p Minkowski problem for the electrostatic p-capacity for $pge n$ 静电p-容量的L_p Minkowski问题
IF 1.1 2区 数学
Indiana University Mathematics Journal Pub Date : 2021-01-01 DOI: 10.1512/iumj.2021.70.8719
Xinbao Lu, Ge Xiong
{"title":"The L_p Minkowski problem for the electrostatic p-capacity for $pge n$","authors":"Xinbao Lu, Ge Xiong","doi":"10.1512/iumj.2021.70.8719","DOIUrl":"https://doi.org/10.1512/iumj.2021.70.8719","url":null,"abstract":"","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66765068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信