Validity of Whitham's modulation equations for dissipative systems with a conservation law: Phase dynamics in a generalized Ginzburg-Landau system

IF 1.2 2区 数学 Q1 MATHEMATICS
T. Haas, B. D. Rijk, G. Schneider
{"title":"Validity of Whitham's modulation equations for dissipative systems with a conservation law: Phase dynamics in a generalized Ginzburg-Landau system","authors":"T. Haas, B. D. Rijk, G. Schneider","doi":"10.1512/iumj.2023.72.9297","DOIUrl":null,"url":null,"abstract":"It is well-established that Whitham's modulation equations approximate the dynamics of slowly varying periodic wave trains in dispersive systems. We are interested in its validity in dissipative systems with a conservation law. The prototype example for such a system is the generalized Ginzburg-Landau system that arises as a universal amplitude system for the description of a Turing-Hopf bifurcation in spatially extended pattern-forming systems with neutrally stable long modes. In this paper we prove rigorous error estimates between the approximation obtained through Whitham's modulation equations and true solutions to this Ginzburg-Landau system. Our proof relies on analytic smoothing, Cauchy-Kovalevskaya theory, energy estimates in Gevrey spaces, and a local decomposition in Fourier space, which separates center from stable modes and uncovers a (semi)derivative in front of the relevant nonlinear terms.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9297","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

It is well-established that Whitham's modulation equations approximate the dynamics of slowly varying periodic wave trains in dispersive systems. We are interested in its validity in dissipative systems with a conservation law. The prototype example for such a system is the generalized Ginzburg-Landau system that arises as a universal amplitude system for the description of a Turing-Hopf bifurcation in spatially extended pattern-forming systems with neutrally stable long modes. In this paper we prove rigorous error estimates between the approximation obtained through Whitham's modulation equations and true solutions to this Ginzburg-Landau system. Our proof relies on analytic smoothing, Cauchy-Kovalevskaya theory, energy estimates in Gevrey spaces, and a local decomposition in Fourier space, which separates center from stable modes and uncovers a (semi)derivative in front of the relevant nonlinear terms.
具有守恒律的耗散系统的Whitham调制方程的有效性:广义金兹堡-朗道系统的相动力学
众所周知,Whitham调制方程近似于色散系统中缓慢变化的周期波列的动力学。我们感兴趣的是它在具有守恒定律的耗散系统中的有效性。这种系统的原型例子是广义的Ginzburg-Landau系统,它作为一个通用振幅系统出现,用于描述具有中性稳定长模的空间扩展模式形成系统中的图灵-霍普夫分支。在本文中,我们证明了通过Whitham调制方程获得的近似值与该Ginzburg-Landau系统的真解之间的严格误差估计。我们的证明依赖于分析平滑、Cauchy-Kovalevskaya理论、Gevrey空间中的能量估计以及傅立叶空间中的局部分解,该分解将中心与稳定模式分离,并在相关非线性项前揭示(半)导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信