{"title":"Who Needs External References?—Text Summarization Evaluation Using Original Documents","authors":"Abdullah Al Foysal, Ronald Böck","doi":"10.3390/ai4040049","DOIUrl":"https://doi.org/10.3390/ai4040049","url":null,"abstract":"Nowadays, individuals can be overwhelmed by a huge number of documents being present in daily life. Capturing the necessary details is often a challenge. Therefore, it is rather important to summarize documents to obtain the main information quickly. There currently exist automatic approaches to this task, but their quality is often not properly assessed. State-of-the-art metrics rely on human-generated summaries as a reference for the evaluation. If no reference is given, the assessment will be challenging. Therefore, in the absence of human-generated reference summaries, we investigated an alternative approach to how machine-generated summaries can be evaluated. For this, we focus on the original text or document to retrieve a metric that allows a direct evaluation of automatically generated summaries. This approach is particularly helpful in cases where it is difficult or costly to find reference summaries. In this paper, we present a novel metric called Summary Score without Reference—SUSWIR—which is based on four factors already known in the text summarization community: Semantic Similarity, Redundancy, Relevance, and Bias Avoidance Analysis, overcoming drawbacks of common metrics. Therefore, we aim to close a gap in the current evaluation environment for machine-generated text summaries. The novel metric is introduced theoretically and tested on five datasets from their respective domains. The conducted experiments yielded noteworthy outcomes, employing the utilization of SUSWIR.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139271112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implementation of Artificial Intelligence (AI): A Roadmap for Business Model Innovation","authors":"W. Reim, Josef Åström, Oliver Eriksson","doi":"10.3390/ai1020011","DOIUrl":"https://doi.org/10.3390/ai1020011","url":null,"abstract":"Technical advancements within the subject of artificial intelligence (AI) leads towards development of human-like machines, able to operate autonomously and mimic our cognitive behavior. The progress and interest among managers, academics and the public has created a hype among many industries, and many firms are investing heavily to capitalize on the technology through business model innovation. However, managers are left with little support from academia when aiming to implement AI in their firm’s operations, which leads to an increased risk of project failure and unwanted results. This paper aims to provide a deeper understanding of AI and how it can be used as a catalyst for business model innovation. Due to the increasing range and variety of the available published material, a literature review has been performed to gather current knowledge within AI business model innovation. The results are presented in a roadmap to guide the implementation of AI to firm’s operations. Our presented findings suggest four steps when implementing AI: (1) understand AI and organizational capabilities needed for digital transformation; (2) understand current BM, potential for BMI, and business ecosystem role; (3) develop and refine capabilities needed to implement AI; and (4) reach organizational acceptance and develop internal competencies.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141207173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}